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Cyclic perturbations facilitate athermal creep in
yield-stress materials†

Ezequiel E. Ferrero *a and Eduardo A. Jagla b

Yield stress materials deform irreversibly at a finite strain-rate if loaded with a fixed stress s larger than some

critical yield stress sc. When s o sc deformation is absent, except for transient or thermally activated

processes. However, the cyclic temporal variation of system parameters can induce a persistent irreversible

deformation under sub-critical athermal conditions. We characterize this phenomenon using well established

models in the fields of the yielding and depinning transitions. We find that the amount of deformation per

cycle increases if sc is approached from below, and it decreases and even vanishes at a novel critical stress

s0 o sc when this is reached from above. Interestingly, s0 plays a role similar to the fatigue limit in the

context of fatigue damage propagation. Our study is inspired by the literature on soft Earth geophysics where

soil creep mechanisms have been correlated with cyclic changes of environmental conditions, such as daily

or seasonal fluctuations in temperature and humidity, which in turn promote fluctuations in the systems

internal mechanical properties. We believe our findings can motivate an interdisciplinary perspective on the

study of sub-critical landform evolution, as the creep of hill slopes over long periods of time.

I. Introduction

There is a renewed interest in the study of the ‘thin skin’ of the
Earth.1,2 The understanding of the soft matter landscape on
which we live comes up as increasingly essential in times of
climate change. Several hazardous events, such as landslides,
earthquakes, faulting, and ice fractures, are related to the slow
evolution of landscapes. In particular, well-known evidence
indicates that terrains systematically evolve downhill over long
periods of time (years and beyond), a phenomenon known as
soil creep in geophysics.3,4 This sub-critical crawling motion
exhibits dynamics similar to that of yield-stress materials.
These are systems encompassing gels, foams, emulsions and
polymeric, colloidal and granular glasses, characterized by a
macroscopic persistent deformation rate if applied stress s is
larger than some critical value sc.5,6 This analogy has motivated
the study of geophysical problems with tools and models
inherited from condensed matter and statistical physics, on a
field now called soft Earth geophysics.1,2

Under sub-critical conditions (s o sc) the deformation of
amorphous materials can be either a transient effect (usually

referred to as ‘Andrade creep’)5–9 or a thermally activated
flow,10,11 which eventually at very small driving is analogous to
the thermal creep of elastic interfaces in random media.12–14 In
soils (a case of granular matter composed by sand, rocks, clay,
organic remains, etc.), it is quite clear that thermally activated
processes are almost negligible, and the possibility of long
lasting but transient deformations is under debate. For instance,
recent experiments on sand-piles,15,16 essentially an athermal
system, have shown sustained creep motion at sub-critical slopes
in undisturbed setups, and presented these ‘‘quenched quies-
cent heaps that creep indefinitely’’ as a challenge to granular
rheology. This raises a natural question: what other sub-critical
flow mechanisms, aside from transient or thermally activated
creep, should be considered in soft Earth geophysics?

Unlike typical soft matter systems studied under controlled
laboratory conditions, soils experience various mechanical
perturbations that, along with gravity, can contribute to sub-
critical flow.17–19 They include vibrations caused by walking of
animals, vegetation movement due to wind, water falling and
flow during rain, and even earthquakes. To some extent, all of
them have the potential to produce a persistent down hill
evolution of the soil.20–24 Other relevant source of external
perturbations comprise those originated by periodic variations
of parameters through changes of environmental conditions
that affect the internal properties of the system. Key examples
include daily or seasonal variations in temperature and humid-
ity, which microscopically alter the size, surface properties, and
mechanical response of soil constituents, thereby affecting the
internal interactions and evolution of the system. The effect of
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cyclic variation of temperature has also been studied in other
contexts. Notably, in metallic glasses25 it was found that
thermal cycling, even when well below the glass temperature
of the material, induces rejuvenation. So, although no macro-
scopic flow is observed, plastic rearrangements occur, likely
associated to the mechanical thermal expansion and contraction.
In granular systems, thermal cycling effects (sometimes referred
to as thermo-mechanical ratcheting) have also been under scru-
tiny in the last years,26–32 primarily by the mechanical engineering
community. Overall, there is qualitative agreement that oscillatory
changes in environmental conditions can significantly affect the
dynamic evolution of the system. In the case of a sloped terrain,
this may lead to a persistent downhill displacement. This phe-
nomenon is the focus of the present manuscript, where we mainly
engage with models and ideas from driven phase transitions in
disordered systems.

The first report of the phenomenon of downhill movement
under oscillatory external conditions is most likely that of
Moseley33 in his letter ‘on the descent of glaciers’ (1856). He
analyzed the case of a slab of material resting on an inclined
plane due to frictional contact. Under periodic variations of
temperature, the slab expands and contracts, and a simple
mechanical analysis predicts that on each full variation cycle
there is a net descent of the slab. His idea was criticized at that
time for being over-simplistic. Nevertheless, it describes the
essential phenomenology that is present in more complex and
realistic systems. Moseley’s idea was recapitulated more
recently by Croll,34 who discussed with illustrative examples
of ice-rich materials and asphalt pavements that, when a solid
is subject to alternations of tension and compression (following
alternations in temperature), some motion can be produced even
in situations where gravity is either absent or, further, against the
prospective motions. Blanc, Pugnaloni and Géminard35 have
applied the analysis of Moseley to a numerically-simulated one
dimensional chain of blocks connected through elastic springs
that rest on an incline. Introducing a cyclic variation of the rest
length of the springs (mimicking a thermal expansion-contraction
of a macroscopic material) they observed a reptation of the chain
down-hill and were able to estimate its average creep velocity.
They used a phenomenological Amontons–Coulomb friction law
between blocks and the substrate. Additionally, the absence of
stochastic elements in their model led to a behavior reminiscent
of ideal dynamical systems, such as peculiar synchronizations,
limit cycles, and plateaus in the dynamical evolution. Although
with limitations, these previous works already gave a qualitative
idea of the phenomenon we will discuss: a sub-critical flow based
on the periodic variation of inter-element interactions that we can
ascribe in real systems to changes in environmental conditions.

Our approach introduces some elements that bring these
ideas closer to the effective description of the concrete phe-
nomenon of soil creep. First of all, we do not introduce any
ad hoc form for a friction law. Instead, we consider the over-
damped evolution of a system of mesoscopic ‘blocks’ or regions
of an amorphous material, and eventually the appearance of a
friction-like law (viz., depinning/yielding) is an emergent prop-
erty in our treatment. Our model incorporates a degree of

randomness, coded mainly in the stochastic form of the
interaction/deformation potentials, and this smooths out the
synchronization effects that might appear in the absence of
such a randomness. Finally and most importantly, we do not
limit to the description of a frictional situation between two
solid bodies, neither to zero- or one-dimensional systems. In
fact, we consider here two-dimensional systems of two families
of problems: (i) depinning models, typically used to describe
the driven transition between rest and motion of an elastic
manifold driven on top of a disordered pinning potential, and
(ii) yielding models, typically used to describe the bulk defor-
mation of an homogeneous amorphous material under an
applied external shear stress.

In particular, the implementation of the yielding case is
suited to describe the slow deformation of a bulk material,
which is the case that is most relevant to describe the soil creep
phenomenon. As a matter of fact, ‘Eshelby’-like correlations in
the strain field, a distinctive characteristics of the yielding
models, have been reported in granular heaps experiments
recently.16 Therefore, returning to our inspiration from soft
Earth geophysics problems,1,15,16 we believe that the kind of
sub-critical deformation mechanism that we analyze, its under-
lying mechanisms and universal features, can be further
explored and extended to tackle concrete examples in that field.

To provide insights in the basic underlying phenomenology,
we first present in Section II the simple example of a two-
particle system joined by a spring that changes its stiffness in a
periodic way. Then, we introduce our modeling framework
(Section III) and study the oscillatory creep phenomenology
in two spatially extended two-dimensional models: (i) an elas-
toplastic model of amorphous solids, with long-range elastic
interactions in Sections IV, and (ii) a driven elastic interface
with short range elastic interactions, in Section V. In Section
VII, we wrap up these findings considering a fully-interacting
mean-field system where some analytical results can be
obtained. Finally, we present our conclusions and pose some
additional questions in Section IX. The article also includes
three appendices. Appendix A contains some details about the
simulation methods and protocol for completeness and repro-
ducibility. In Appendix B we discuss the use of different
disorder types in a fully-connected model. In Appendix C we
derive the analytic results of the mean-field model presented in
Section VII.

II. Reptation of a two-particle system
caused by oscillation of the
interaction intensity

We analyze an elementary system that qualitatively displays the
essence of the physical process under study.35 Let us consider
two particles of mass m joined by a spring, lying on a slope. For
a fixed value of the spring constant k, the system may be at rest,
or smoothly sliding depending on the value of the slope angle,
and the critical friction forces of the particles. Assuming there
is some asymmetry between the particles such that the friction
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forces36 are f1 and f2 a f1, the critical angle ac for smooth
descent at constant velocity is obtained as

sin acð Þ �
f1 þ f2

2mg
: (1)

Note that ac is independent on the value of k.
If a o ac we could expect that the system remains always at

the same location. However, if the value of k fluctuates (let’s say
k oscillates between a large value k = kL and a small value k = kS)
and if a is sufficiently close to (but lower than) ac, then there is
an alternate advance of x1 and x2 as k passes from kL to kS, and
back to kL. This is schematically plotted in Fig. 1. DX is the net
advance of the system per cycle.

The origin of this reptation phenomenon is the following.
Starting from the configuration if Fig. 1(a) with k = kL, the
reduction of k to kS produces an increase of the force on the
right-most particle, which moves to the right until it experiences a
force equal to its critical force; this is the configuration in
Fig. 1(b). Now, as k is increased back to kL, it is the left-most
particle that receives a force larger than its critical one, and moves
to the right until the force does not exceed the critical value any
more (Fig. 1(c)). A simple calculation shows that DX = 0 below a
critical angle a0 given by (we assume f1 4 f2)

sin a0ð Þ ¼
kLf1 þ kSf2

mg kL þ kSð Þ: (2)

If a0 o a o ac the value of DX is given by

DX ¼ � f1

kS
� f2

kL
þmg

1

kL
þ 1

kS

� �
sinðaÞ (3)

which is indicated in blue in Fig. 1. This is the phenomenon we
discuss in the rest of the paper, distilled to its simplest form.

III. Theoretical framework and
modeling

We use a common framework for depinning and yielding
phenomena, that of elastic manifolds evolving onto disordered
energy landscapes.11,37–39 The manifold can either represent an
elastic interface x(r) that undergoes a depinning transition, or it
can represent the local strains configuration g(x) of an amor-
phous material (in this case the energy landscape represents
the possibility of many different locally stable configurations).
We limit ourselves to the study of two-dimensional systems of
depinning and yielding in this work. We use short-range
elasticity for the depinning case and a long-range (Eshelby-
like) elastic propagator for the yielding case.

To fix ideas, let us first describe the case of the depinning of
the elastic interface and then declare the analogous quantities
for yielding. Apart from the elastic interactions and the forces
induced by the underlying disorder potential, the system is
subject to an external drive: we note this forcing as f. We
consider the local position x(r,t) of an interface, that we will
discretize on a square lattice (with periodic boundary conditions)
and denote xi the position at site i. The temporal evolution of xi

follows an overdamped dynamical equation of the form

@xi
@t
¼ �dVi

dxi
þ
X
ð j;iÞ

k xj � xi
� �

þ f (4)

where ( j,i) in the elastic term indicates nearest neighbor sites. The
Vi are quenched disordered potentials that we describe below.

The phenomenology of systems described by eqn (4) is the
following. There is a critical value fc, such that for f r fc the
system eventually reaches a stable configuration and stops
evolving in time; while for f 4 fc it keeps evolving in a finite
steady velocity situation. Above and near fc the velocity v of the
elastic interface has a dependence on f of the form v B ( f � fc)b.
The transition at fc is referred to as depinning,40,41 and it is
sharply defined only in the ideal case in which other external
disturbances are assumed to be negligible. For instance, the
presence of a finite temperature produces stochastic fluctuat-
ing forces on the elementary constituents in the system that are
known to smooth out the transition, turning it into a
crossover.42–44 This produces thermally activated creep even
at very small driving forces.12,14,45

In the present work, while we stick to the athermal case, we
incorporate periodic variations of the value of the elastic
interactions in the system, generically denoted by k, that will
produce a crawling effect on the system and a persistent
evolution, as long as the strength of the elastic interactions
continue to oscillate. Let us recall that, for a given amplitude of
the disorder potential and a fix strength k of the elastic
interactions, the critical force fc depends on k. If for a value
of k = k1 we have a critical force fc1

, for k = k2 o k1 the critical
force will be fc2

4 fc1
. This is because a softer elasticity allows

Fig. 1 Schematics of the reptation process by cyclic variations in the
interaction forces: two particles linked by a spring of strength k rest on an
inclined. For constant k the system behaves according to the black line in
(d) that shows displacement rate dX/dt vs. incline angle a, ac being the
minimum slope for system movement. If a o ac, the system performs a
reptation upon changing the value of k between kL and kS, advancing a
distance DX on each cycle (a)–(c). There is a minimum slope a0 for this
process to occur.
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the interface to better adapt to the disorder potential, occupying
deeper local energy minima, and therefore increasing the thresh-
old force needed for depinning. Now we consider what happens
if the value of k is cycled between a large value kL and a small
value kS. Such oscillations in k will produce a minor effect in the
moving phase, f 4 fc,kS

4 fc,kL
since the system is already evolving

at a finite velocity regardless the value of k. The most surprising
consequences of an oscillation in k occur in the fully sub-critical
phase f o fc,kL

o fc,kS
. Naively one could expect no movement at

all in this regime. However, as in the problem analyzed by
Moseley,33 the oscillatory variation of k induces a systematic
advance of the elastic manifold that is synchronized with the
cycles of the perturbation.

In the steady state, after many oscillation cycles of k, an
advance equal to MDX will be observed, where M is the number
of cycles applied and DX is the advance per cycle. Even though
it might be incorrect to talk about a finite velocity of advance,
DX is a clearly measurable quantity and happens to be non-zero
in a non-negligible range of sub-critical forces. DX is particu-
larly large when f is only slightly below the critical force fc = fc,kL

,
and is shown to decrease as we depart from it. Furthermore, we
are able to show that this athermal reptation assisted by the
cyclic variation of parameters cannot happen below a minimal
external force f0, with f0 depending on kL and kS. The above
dynamical scenario is schematically illustrated in Fig. 2.

When addressing the case of the yielding transition of driven
amorphous solids, we can do a complete analogy of the phenom-
enology described above for depinning. An amorphous solid
subject to an external stress s will flow in the steady state if
s 4 sc.

46 In this case, the order parameter of the transition is the
deformation velocity or strain-rate _g that departs from zero as _g B
(s � sc)

b, typically with b 4 1. We describe a two-dimensional
material with periodic boundary conditions. The equation of
motion that we solve for each site i is now

@gi
@t
¼ �dVi

dgi
þ
X
j

Gijgj þ s (5)

where the interaction kernel Gij (the sum runs over all j a i) is
chosen to be the Eshelby propagator with an amplitude that we
control with a factor k,

Gij / k
cos 4yij
� �
rij2

: (6)

Notice that this kernel is long-ranged (details of the implemen-
tation can be found in Appendix A). In the case of the amor-
phous solid, DX corresponds to a change in plastic strain
(DX � Dg) instead of interface position. As the depinning
counterpart, the yielding transition also displays a thermal
rounding phenomenon when temperature is relevant,10,11 but
we stay in the athermal case in the present work.

The athermal reptation mechanism we are discussing only
occurs at driving below and sufficiently close to fc. Yet the effect
may be relevant as many systems are expected to adjust
spontaneously into such a condition. For instance, the rest
slope of a terrain usually accommodates at an angle just below

the rest angle, as it occurs also with a heap of sand or gravel.
This is, the system steps at the situation in which the effect
of periodic disturbances in the interactions is expected to be
maximized.

In most of this study the disordered potentials Vi are chosen
to be an alternate sequence of parabolic ‘traps’ and flat regions,
as schematically shown in Fig. 14 of Appendix A. For simplicity
we have chosen the traps to be identical and to encode the
stochasticity in the length of the flat regions of V(x). The use of
some stochastic element in the definition of the potentials Vi is
rooted in the general framework of depinning and yielding
transitions. Beyond this fact, all qualitative results are expected
to be independent of the kind of randomness used. We have
checked that other forms of the random potentials give quali-
tative the same results, the main reason for the present choice
is that it maximizes somehow the stress range in which the
reptation is observed (see also Appendix B for results with a
different form of the disorder).

IV. Results for amorphous solids

We first present the results for the yielding model. We numeri-
cally solve the equations of motion (5) for different values of the
applied stress s and either fix or oscillating values of k. Details
of the implementations can be found in Appendix A.

First, we characterize the system at fixed values of the elastic
interaction intensity k, by constructing the corresponding
flowcurves for different values of k, Fig. 3. This is done starting
at a large value of s, and calculating the average value of _g after
reaching a steady state along the simulation. Then, s is
progressively reduced in discrete steps and the corresponding
values of _g in a steady state are obtained. We plot _g as a function

Fig. 2 Schematic display of the crawling mechanism by cyclic variation of
parameter k discussed in this work. By oscillating the elastic constant k
between kL and kS o kL finite displacements per unit cycle DX are obtained
at forces which are below both f

kL
c and f

kS
c , the depinning forces of the

system at fix k = kL and k = kS, respectively. The same happens in the case
of the yielding model with stress s taking the place of f, an increase per Dg
is observed. The schematics emphasizes the different forms of the flow-
curves for depinning and yielding, and anticipates that this form is
reproduced in the behavior of DX (Dg) near f0 (s0).
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of s and this describes a singular law _gB (s � sc)b. This is fully
equivalent to the Hershel–Bulkley law in the rheology of
complex systems, by just swapping the axes and representing
s as a function of _g, s = sc + A_gn, with n = 1/b, see for instance
ref. 6 and 47. We observe in Fig. 3 how the critical stress sc

depends on k, and increases as k is reduced. Yet, near sc all
curves behave as (s � sc)b with bC 1.5, as it is shown in Fig. 3’s
inset. This is a well known result of the yielding transition, and
the observed exponent b is the one expected in two-dimensions
for the ‘cuspy’ type of potential used here.37,47 Notice that a
smooth potential (or equivalently, a progressive local yielding
rule) would give instead b = 2, which occasionally happens to
compare better with experimental measurements5,47 and with
the n = 0.5 yielded by the classic Hébraud–Lequeux mean field
approach.48,49 It’s worth mentioning that, for each value of k,
the numerical value of sc is non-universal, it has sample to
sample fluctuations and also suffers from finite size effects.50

In the presence of an applied constant stress below the
critical value, we cycle the values of k between the starting large
value kL and a small value kS. Having the soil creep phenom-
enon in mind, this cycling is done very slowly, ensuring that
a further reduction of the cycling rate does not affect substan-
tially the results obtained (in case of using a more rapid
oscillation of parameters the qualitative phenomenon persists,
although its quantitative extent is reduced, see Appendix A).
We measure the advance Dg of the average strain in the system
per cycle. The results are presented in Fig. 4. There is a finite
range of sub-critical stresses between sc and down to some
value s0, in which Dg is finite. For a fix kL, as it is the case of
Fig. 4, the value of s0 depends on kS. As a matter of fact, the
range s0 � sc where oscillations produce a non-zero displace-
ment Dg becomes wider as kL � kS increases. Let us mention
that, as sc, s0 might also suffer from finite-size effects, but
these are negligible compared to the gap sc � s0 which remains
finite in the thermodynamic limit as far as kS o kL. Note also

that, independently of the oscillation amplitude, Dg increases
when approaching sc.

Looking at the inset of Fig. 4, we can further point out that
the form of Ds close to s0 is reminiscent of the flowcurves at fix
k, this is, it reaches s0 with a power-law consistent with Ds B
(s � s0)3/2. We will come back to discuss this similarity in
Section VI. Yet, let us advance here that whatever the critical
exponent b is around sc, according to each known case,47 we
expect the same exponent to be observed around s0 in the
oscillatory k athermal creep protocol.

The dependence of sc and s0 with kL for different values of k0

is presented in Fig. 5. The value of Z � (sc � s0)/sc is a measure
of the relative range in which we observe sub-critical flow. We
see that Z is maximal for kS = 0, and it progressively shrinks as
kS is increased at a fixed kL. In addition, for a fixed value of kS

the value of Z is larger at larger values of kL, and it decreases as
kL does. The mean field analysis of Section VII suggests that Z is
different from zero in all the range kL 4 kS, yet it is very small
when kL \ kS.

V. Results for elastic interfaces

We now present results for the effects of changing or oscillating
the elastic interaction strength in the case of elastic manifolds
on disordered media that undergo a depinning transition. We
proceed in analogy with the yielding case described in the
previous section, now working with eqn (4).

We characterize the system at fixed values of k, by construct-
ing the corresponding flowcurves, as displayed in Fig. 6. Note
how the critical force fc increases as k is reduced. Still, near fc all
curves behave as ( f � fc)b with b C 0.67, as it is shown in the
inset. A value of b smaller than 1 is a well known characteristic
of depinning models, and it is an important difference with
the yielding case, where b 4 1. Moreover, we observe compat-
ibility with the exponent expected for short-range depinning in
d = 2.13,51

Fig. 3 Yielding model. Flowcurves (strain-rate _g vs. stress s) for the 2D
elasto-plastic model of an amorphous solid under shear, at different values
of the long-range elastic interaction intensity k. The inset shows _g vs.
s � sc, where sc = sc(k) depends on k. The dashed line displays a law _g B
(s � sc)1.5. Data corresponds to a system of size N = 1024 � 1024.

Fig. 4 Yielding model. Strain advance Dg vs. stress s for our 2D elasto-plastic
model when cycling between a fixed kL = 3.0 and different values of kS. The
inset displays Dg vs. s � s0(kS). The power-law B (s � s0)1.5 is displayed as
guide to the eye. Data corresponds to a system of size N = 128 � 128.
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In the presence of an applied force smaller than the critical
one, we cycle the values of k between the starting value kL and the
a final value kS. As in the yielding case, we observe an advance DX
per cycle of the interface; results are presented in Fig. 7. There is a
finite range of forces between some f0 and the critical force fc, in
which the value of DX is finite. Note how DX increases when
approaching fc. The range [f0, fc] where the effect is observed
becomes wider as kL � kS increases. Since we work in Fig. 7 at a
fixed kL = 0.2, the range of forces at which the subcritical athermal
reptation occurs is maximal for kS = 0. Again, as in the yielding
case, we point out that the form of DX close to f0 seems to be
consistent with a ‘shift’ of the criticality from fc to f0, i.e., DX
maintains the b C 2/3 exponent of the velocity–force character-
istics around fc on its behavior close to f0: DX p ( f � f0)2/3.

The dependence of fc and f0(kS) with kL is presented in Fig. 8.
Both fc and f0 decrease as k (or k = kL) is increased, nevertheless,

f0 drops faster, specially when the oscillation amplitude (kL � kS)
is large. The difference between fc and f0 for a given kL allows for
a window of observation of finite advance DX of the interface
through the mechanisms of athermal reptation facilitated by
oscillations of k. As in the yielding case, for any fixed value of kS

the value of Z � ( fc � f0)/fc decreases as kL does. Again, the mean
field results in Section VII suggest that Z is different from zero
for any kS o kL.

VI. Criticality at f0

The form of the flowcurves above and close to the depinning
critical value fc (sc for yielding) is characterized by an exponent
b, which contains information about the criticality of the
depinning (or yielding) transition:

Fig. 5 Yielding model. Yielding critical stress sc (blue circles) and s0 (red
squares for kS = 0, chocolate diamonds for kS = 0.5) vs. kL. System sizes
used are N = 10242 and N = 1282 for the curves of sc and s0, respectively.

Fig. 6 Depinning model. Velocity–force characteristics (v vs. f) for the 2D
elastic interface model of depinning, at different values of the short-range
elastic interaction constant k. The inset shows v vs. f � fc, where fc = fc(k)
depends on k. The dashed line displays a law v B (f � fc)0.67. Data
corresponds to a system of size N = 128 � 128.

Fig. 7 Depinning model. Interface advance DX vs. (sub-critical) applied
force f when cycling between a fixed kL = 0.2 and different values of kS.
The inset displays DX vs. f � fc(kS). The power-law B (f � fc)2/3 is displayed
as guide to the eye. Data corresponds to a system of size N = 128 � 128.

Fig. 8 Depinning model. Critical force fc (blue circles) and f0 (red
squares for kS = 0, chocolate diamonds for kS = 0.05) vs. kL. System size
used is N = 1282.
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v B ( f � fc)bd; _g B (s � sc)by. (7)

We have seen that, when analyzing the curves depicted by the
sub-critical advance per cycle DX (by oscillations in k) close to f0,
they also look as power-laws. Moreover, the exponents b (bd B
2/3 for depinning and by B 3/2 for yielding) seem to be
conserved (within the precision of our numerical data), namely

DX B ( f � f0)bd; Dg B (s � s0)by. (8)

This similarity raises the question about the possibility of
having a criticality analogous to the one of the parent transition
(depinning/yielding) but at f0 (s0) in the problem of sub-critical
advance with oscillations in k. We present now further evidence
of criticality around f0 (s0), which favors the hypothesis that the
parent transition at fc (sc) is translated somehow to the new
(lower) thresholds when oscillations in the environmental
conditions step in.

For depinning with constant k it is well known that, in
analogy with equilibrium critical phenomena, there is a corre-
lation length x diverging at fc as x B | f � fc|�n in the
thermodynamic limit, which is the hallmark of criticality in the
system.41,52 One way to assess this correlation length is to
evaluate the interface width w as a function of f, which close
to fc is expected to scale as w B xd+z, with z the roughness
exponent.13,43 We may ask if a similar divergence exists in the
case of subcritical interface advance under cycling of k, but now
around f = f0. Using the standard definition of width

w2 � xi2 � �xi
2; (9)

we investigate the value of w as a function of f, in finite systems
of different sizes and comparing the cases of fixed and cycled
values of k.

In the case of a constant k we proceed in the following way.
We start at f = 0 with a flat interface (xi = 0) and allow the
interface to adapt to the pinning forces. Then, f is increased
slowly, allowing for the interface to reach a stationary configu-
ration and calculating the value of w at each f. As long as f o fc,
the interface reaches a static equilibrium configuration, with w
increasing with f. When f 4 fc the interface is dynamically
evolving with time, and the value of w decreases with respect to
its value at fc.53 The results we obtained are shown in Fig. 9. A
sharp maximum of w around fc is clearly observed, as a sign of
criticality. Consistently with what is expected, the maximum of
w( f) increases with system size. Moreover, we can study how w( f)
behaves around f = fc. For depinning one expects w B xz and xB
|f � fc|�n, therefore w B |f � fc|�nz, which in the case of d = 2
short-range depinning13 (z = 0.75, n = 0.8) results in w B |f �
fc|
�0.6. This behavior is reasonably observed in the data off Fig. 9.
Then, we perform a similar analysis when cycling k between

kL and kS. The protocol is unchanged with respect to the
constant k case, with the important clarification that values
of w are now taken stroboscopically in the moments when k =
kL.54 Values of the width w in the oscillatory regime are shown
in Fig. 9 alongside those obtained at fix k. We clearly observe a
peak of the interface width at f0, that separates the regions of
no cyclic advance ( f o f0) from that of cyclic interface advance

( f 4 f0). The values of w diverge at f0 in a way compatible with
the expression w B |f � f0|�0.6. This suggests that we are in the
presence of a critical configuration of the interface at f0 when
cycling k, analogous to the critical configuration at fc under
constant k.

Switching now to the case of yielding, let us start by recalling
some inherent problems with the definition of the interface
width w in such case. As it is well known, the Eshelby kernel
possesses soft modes55 (i.e., directions in q space with vanish-
ingly small energy) that are responsible for an unbounded
increase of the interface width in time, when the interface is
moving. This causes the value of w to be ill defined, since it
typically increases in a diffusive way with time. However, this
occurs only in the moving phase (i.e., for s4 sc in the constant
k case, or s4 s0 in the cycling case), whereas the value of w can
still be defined below the critical values sc or s0. Therefore, for
yielding we present results only in those regions of applied
stresses. Fig. 10 shows the results obtained for the width w of
the elastic manifold in the elastoplastic model simulations
(using the same definition as for depinning, eqn (9)). We see
a divergence of w close to sc for the constant k, and a similar
one close to s0 for the oscillating k situation of the kind w B
(s � sc,0)0.23.56 As in the depinning case, this suggests a critical
configuration of the interfaces at s0 under oscillation of k,
similar to that occurring at sc under constant k.

The finding of a novel critical point at f0 (s0) in the
oscillatory simulations with apparently similar criticality as
that fc (sc) is one of the most intriguing outcomes of our
investigation. All our results have been presented for a kind
of disorder potential that we have called ‘‘cuspy’’ in previous
works.37,38,47 Essentially, disordered potentials composed by
concatenation of parabolic wells. This means that there is an
abrupt transition when particles jump out of one well since the

Fig. 9 Depinning model. Interface width w as a function of force for both
constant k = kL = 0.2 and cyclic k (between kL and kS = 0), and different
system sizes. Vertical dashed lines mark the location of fc and f0. The inset
shows w vs. |f � fc| or |f � f0| in log–log scale (both ‘from-the-right’ and
‘from-the-left’ branches are shown for each peak, and curves corres-
ponding to the peak at f = fc are shifted up a factor of ten for a better
visualization). The gray dashed lines there correspond to w B |f � fc|0.6.
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potential has a discontinuous derivative at the cusp. We have
argued37,47 that in the case in which this potentials are smooth,
the criticality at fc – in particular the value of the b exponent of
the velocity–force characteristics – changes. Therefore, a nat-
ural step to verify if the coincidence of the universality at f0 and
fc is a robust feature, would be to study a model using cuspy
and smooth potentials and see if the exponents change con-
sistently in both fc and f0. A detailed study of cuspy vs. smooth
potentials in spatial yielding and depinning systems in the
context of the oscillatory creep is left for future works, but here as
a proof of concept, we test the hypothesis in the simplest case of
mean field depinning, fully connected interactions. The results
are presented in Appendix B and interestingly they indicate that
when cycling k, we find the same critical exponents around f0 as
those at the classical velocity–force characteristics at fc (b = 1 for
cuspy potentials and b = 3/2 for smooth potentials). This, in fact,
strengthens the idea that cyclic variations of internal parameters
(as the elastic constant k) can effectively cause a ‘shift’ of the flow
threshold, depleting the critical point, which brings with it the
criticality, that is preserved. And, at the same time, it shows the
robustness of our results respect to the choice made to take
stochasticity into account in the models.

VII. The reptation mechanism in a
mean-field approach

The results in the previous sections concerning spatially dis-
tributed depinning and yielding models are the closest to
geophysical application and can serve as a starting point for
more realistic studies. Nevertheless, we think it is conceptually
valuable to complement those results with a mean-field
approximation. This will give insight into the mechanism of
sub-critical deformation, and will also allow us to analytically

verify some of the claims that we made in the presentation of
results for spatially extended models.

Let us consider a system of N particles characterized by their
coordinates xi (i = 1, . . ., N) interacting elastically. The mean
field nature of the model is contained in the form of the elastic
interaction, that produces an elastic force on each particle
given by

fel
i = k(X � xi) (10)

where X ¼ N�1
P
i

xi is the average position of the interface.

Furthermore, in the present section we take the potential Vi(xi)
of interaction with the substrate to be a collection of narrow
wells randomly distributed along the xi coordinate with a mean
separation a. This can be thought to correspond to a limit in
which the parabolic wells used previously become very narrow.
The wells are characterized by the force fp that must be applied
to a particle trapped in the well to escape from it. For simplicity,
we take the value of fp to be the same for all wells, stochasticity
is guaranteed by the random position of the wells. In addition,
an external force f is assumed to be applied to the particles.

In the narrow well approximation the dynamical evolution
equation (of the kind of eqn (4)) is replaced by a discrete rule,
defined in the following way. If a particle is inside a potential
well, it remains there as long as the absolute value of the force
on the particle Fi � f + fel

i is lower than the pinning force fp. If
|Fi| 4 fp, in a single time step the particle jumps (towards the
right or the left according to the sign of Fi) to the equilibrium
point where Fi = 0, namely x̃i = f/k + X, or to a new potential well
if it happens to reach one in between xi and x̃i.

The critical force fc in this model is the maximum value of f
for which a stationary (non-moving) situation can be found,
namely a configuration in which all sites have either |Fi| o fp

and are within pinning centers, or have Fi = 0. The value of fc

can be obtained analytically (see Appendix C). Introducing the
rescaled variable

z ¼ ka

fp
(11)

one obtains that fc is given by

fc = fp(1 � z + ze�1/z). (12)

Now, we introduce in the model the variation in time of the
spring constant k, considering a cyclic variation between a large
value kL, and a small value kS, and take this variation to occur
quasi-statically, this is, not introducing effects associated to the
velocity of variation. The process can be analyzed qualitatively
as follows (Fig. 11). We suppose that the system is under an
applied force f that is lower than fc for all values of k in the
range kS � kL (in practice, this means that f is lower than the fc

corresponding to kL). In Fig. 11(a) we sketch a configuration of
the system at a large value kL of k. This is a stable configuration,
with some particles at pinning centers, and some others out-
side them. In Fig. 11(b) we depict the configuration of the
system when k has been reduced to a value kS that for a simpler
analysis has been taken to be zero. Sites that were pinned in (a)

Fig. 10 Yielding model. Yielding strain manifold width w vs. s for both
constant k = kL = 3.0 and cyclic k (between kL and kS = 0.5), and different
system sizes. Vertical dashed lines mark the location of sc and s0. The inset
shows w vs. s � sc or s � s0 in log–log scale and the gray dashed lines
there correspond to w B (s � sc,0)0.23 (curves corresponding to the peak
at s = sc are shifted up a factor of three for a better visualization).
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remain pinned at the same well, but those that were unpinned
are dragged to the right by f, and each one reaches the first
available well, where it gets pinned. In Fig. 11(c) the value of k is
increased again to kL and some particles (those located in the
left-most wells) jump out of their pinning centers, as the total
force on them is larger than fp. The system accommodates in a
new equilibrium configuration (c) that is not coincident with
the one in (a), although the parameters in (c) are the same as
those in (a). Therefore, there is a finite shift in the mean
position of the interface DX � Xc � Xa. If the cycling of k
between kL and kS is repeated, a shift DX is expected to occur on
each cycle. The value of DX will be larger when f is close to fc

and will be smaller as f is decreased away from fc. This is
expected, since f is the driving force for the increase of X on
each cycle of variation of k.

By the treatment presented in Appendix C we have been able
to derive analytically the form of DX as a function of f ( f o fc) in
the case in which kS = 0. This is shown in Fig. 12 with the
continuous red line. This analytical result is very important as it
shows that there is in fact a minimum value f0 that has to be
exceeded to have a finite value of DX. The analytic form of f0

(eqn (C5)), together with eqn (12) for fc are plotted in Fig. 13.
Although the two curves become very close as kL approaches
zero, they remain different for any kL a 0. We believe this
also occurs in the depinning and yielding cases (Fig. 5 and 8);
notice that curves there show data obtained at fixed values of
kS and not relative to kL, therefore the behavior is not as evident
as in Fig. 13.

We complement the analytical results with numerical simu-
lations to obtain the value of DX as a function of the values
kL and kS, at different values of the applied force f. A system
with N = 105 sites is simulated following the rules explained at
the beginning of the section. First, a value of k = kL is chosen
and some f 4 fc is applied during a number of steps to obtain a
steady state. Then we reduce progressively f repeating the
procedure and measuring in the steady states to obtain the
flow curve. When f becomes lower than fc, X sets to a constant
value. Starting from this initial configuration we slowly cycle k
between kL and kS and obtain the average advance of the
interface DX per cycle.

When f 4 fc, the deformation of the system increases at a
finite rate with time, defining the flow curve

:
X vs. f. This is

plotted in the right part of Fig. 12 for different values of the
parameter k. As in the spatially extended models for depinning
and yielding of previous sections, we see how lower values of k
displace the curves to the right: softer elastic interaction gives
possibility to the system to accommodate better to the pinning
potential and the necessary stress fc to produce a finite defor-
mation velocity increases. The results for DX are displayed in
the left part of Fig. 12, where DX is shown as a function of f,Fig. 11 Qualitative evolution of the configuration of the system when k

passes from a high value kL (a) to a small one kS (b) and increases again to
kL (c). A constant stress f (pointing to the right) is present in all cases.
Although the parameters of the system in (a) and (c) are identical, the
system configuration is not, the mean position moved to the right by DX.

Fig. 12 Fully-connected depinning model. (right) Numerical flow curves
of the system at different values of k. (left) Interface advance DX per cycle,
as a function of applied force f when the interface stiffness is cycled
between kL = 2, and values of kS as indicated. Points are the results of
numerical simulations. The continuous red line is the analytical result for
kS = 0 (see Appendix C).

Soft Matter Paper



6316 |  Soft Matter, 2025, 21, 6307–6323 This journal is © The Royal Society of Chemistry 2025

when k is cycled between a value kL = 2, and different values
of kS. For kS = 0 the numerical results nicely reproduce the
analytical ones. When kS 4 0 the range f0 � fc in which the
effect is observed is reduced.

In Fig. 13 we also show results of numerical simulations for
f0 and fc. We see that numerical and analytical values of fc as a
function of k = kL agree very well. The same occurs for f0 when
kS = 0. The region between f0 and fc is the range in which there
is a non-zero advance DX for each cycle of variation of k.

VIII. Discussion and connection with
related phenomena

Let us now emphasize similarities and differences between the
mechanism of sub-critical flow or reptation presented here and
other cases that have been considered previously in the literature.
As stated in the introduction, external mechanical noise has been
studied as a possible driver of sub-critical flow in soft-glassy
materials. In many cases, external noise is assumed to act ran-
domly in time and/or space, making its effect similar to that of
thermal noise, apart from differences in relative intensity.23,24,57 In
other cases, the external perturbation acts rather homogeneously
across the system, as for instance in the case of cyclic loading,58,59

or when a ‘‘tapping’’ noise is applied.15 In addition, ‘‘noise’’ has
been applied on top of an average external stress as a stochastic
contribution,60 or simply as a serrated contribution to the stress.61

In this last case a viscous response directly related to small stress
modulations and consequently ‘flow’ below the yield stress is
found, in a scenario described as a ‘secular drift’ or ratcheting
process at long times.

The key distinction between previous scenarios and our
results is that we consider a perturbation (the variation in the
elastic stiffness k of the system) that acts in a quasi-static limit,
meaning it has no effects associated with its rate of change. In
addition, this perturbation is homogeneously applied to the

whole system, and it can be considered to be rooted in variation
of environmental conditions. We have described our mecha-
nism as a ‘‘reptation’’ process, which is an image particularly
adapted to the two-particle model of Section II, as well as for
the model system described by Moseley.33 Yet, the full models
of depinning and yielding that we considered can be qualita-
tively described by the same basic mechanism.

It is worth commenting on the literature on thermally cycled
granular systems.26–32 Some experimental setups incorporating
thermal cycling are related to pile compaction;26,32 while others
analyze ratcheting displacement by including a lateral forcing
on a body resting on the granular system,28 and could bare
more similarity with the downhill soil creep. In all these cases,
the periodically oscillated environmental variable is the external
temperature and its variations have proved to induce macroscopic
volumetric expansion and contraction cycles which can induce
irreversible deformations in granular systems such as sand, silts
and clays.30 While the microscopic origins of the macroscopic
response remains somehow elusive,31 X-ray microtomography has
revealed already that interactions happening at the particle level
are key: the material’s thermally induced deformations (e.g.
compaction) are strongly dependent on particles shape,31,32 as
well as on relative density and the prescribed temperature ampli-
tude itself.30,32 Conceptually, it is not difficult to accept that
consecutive periods of expansion and contraction of the granular
material would produce, at least at a mesoscopic length scale, a
modulation in the region-to-region elasticity propagator, which is
what the models incorporate in a simplified approach to the real
materials.

There is a remarkable similarity between the sub-critical
flow mechanism described here and the phenomenon of cyclic
fatigue in material science.62 In fact, the cyclic fatigue phenom-
enon typically refers to the systematic increase in the length of
micro-cracks by a fixed amount63 at every cycle of increase and
decrease of the stress applied to a sample. There is a strong
analogy between this process and the finding of a constant
increase DX under increase and decrease of spring constants in
our case. Also, the finding of a lower force/stress value ( f0 or s0)
below which oscillation of the spring constant does not pro-
duce any average deformation is qualitatively similar to the
concept of ‘‘fatigue limit’’ (also known as intrinsic strength for
polymeric materials, see ref. 64 and 65). Namely, a stress
amplitude below which cracks in a material do not display
any advance. Yet one difference is that cracks do not form in
our set up, since the detaching of particles from their potential
wells is followed by the re-attaching to a new well at a different
position. Another difference is that in the fatigue scenario it is
the stress amplitude itself that gets temporal variations, while
there are no changes in intrinsic parameters of the system. In
contrast to hard and fragile materials, soft glassy materials – in
particular gels66 – might be a good benchmark to compare the
characteristics of cyclic fatigue with those of the sub-critical
flow we describe in this work, as such systems (within some
experimental conditions) can also flow continuously without
irreversible failure, and therefore reach flowing steady-states.
Fiber bundle models67 are a particularly useful benchmark to

Fig. 13 Fully-connected depinning model. Critical force fc as a function
of kL (gray line, analytical result), reptation limit f0 as a function of kL (black-
dashed line, analytical result), and numerical results for f0 when cycling the
system between kL and kS as indicated in the labels.
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study the possible effect of oscillatory variation of parameters
leading to fatigue failure. We plan to explore further this
analogy, also considering cases where the perturbation takes
the form of an externally oscillating stress, either aligned with or
in a different direction from the average stress. This will bring
our case much more similar to the fatigue scenario. In addition,
results on shear-oscillated granular systems59 showing that
particle roughness on a given length-scale could effectively affect
the energy landscape and facilitate flow below the expected
critical amplitude could constitute interesting analogous cases
of critical threshold depletion. On the theoretical side, it would
be interesting to analyze the mechanically stable configurations
both below and above f0 during the oscillatory protocol in the
context of the Edwards thermodynamics.68

IX. Summary and conclusions

In this work, we investigated a mechanism for athermal, sub-
critical material flow driven by periodic variations in a para-
meter that affects internal structural forces in an externally
driven system. We illustrated this mechanism using a minimal
model: two particles connected by a spring of variable stiffness
k, which undergoes reptation down an inclined plane with a
finite displacement DX per cycle of periodic variation in k. We
then extended this oscillatory mechanism to spatially distrib-
uted models of depinning and yielding transitions.

We demonstrated that when the external driving force f is
below the critical threshold fc required for a steady deformation
with time at a finite rate (dX/dt 4 0), there is a regime in which
the system exhibits synchronized evolution with the periodic
variation of k, which represents the global elastic rigidity.
The deformation per cycle, DX, decreases as f is reduced and
vanishes at a well-defined threshold, f0. These results were
obtained numerically and also analytically in a mean field
version of the problem.

The discovery of a sharp f0 value that separates a long-lasting
evolving regime from a non-evolving one is particularly remark-
able. This behavior is fundamentally different from thermal
creep, where thermal activation always induce a finite creep
rate, even at arbitrarily low f (although vanishingly small as f is
reduced). Furthermore, the similarity between the behavior of
DX near f0 under variation of k and that of v near fc for fixed k
suggests that the system may exhibit criticality at f0, analogous
to its critical behavior at fc. Our analysis of the elastic rough-
ness near f0 revealed a divergence in the interface width w, a key
indicator of criticality. Current results suggests that the critical
exponents at f0 may be the same as those at fc, though further
detailed numerical analysis is required to confirm this.

Our findings have potential implications for interpreting
geophysical processes at the Earth’s surface. While the persis-
tent downhill creep of natural soils remains a subject of study,
laboratory experiments suggest that environmental distur-
bances play a crucial role. In particular, Deshpande and co-
workers15 assign to daily temperature fluctuations the ability to
‘rejuvenate’ the sandpiles through thermomechanical stresses

and sustain an approximately constant creep rate through
repeated heating and cooling cycles. This phenomenon is not
yet fully understood, but we believe to be widespread, extending
beyond specific materials and experimental setups.

The mechanism we propose involves periodic variations in
internal parameters that modulate inter-particle or inter-
regional forces, which facilitates the system reptation or flow.
The timescales associated with this sub-critical displacement
are tightly coupled to the period of parameter oscillation,
suggesting that similar mechanisms could operate in natural
environments, linked to daily, seasonal, or even geological-
scale cyclic variations. Our modeling approach, where an
interaction spring constant changes in an adiabatic manner,
provides a simplified but well-founded framework for capturing
sub-critical flow driven by environmental conditions such as
temperature and humidity. Our hypothesis, supported indir-
ectly by observations in thermally cycled granular systems,
posits that periodic environmental changes induce periodic
oscillations in the systems effective internal parameters. We
demonstrated that this effect is relevant in models of driven
elastic interfaces in disordered media and in models of amor-
phous solids under deformation, revealing a regime of exter-
nally driven sub-critical flow that remains entirely athermal.
The connection between environmental variability and internal
elasticity is key and warrants further systematic study; e.g., the
existence of a finite threshold s0 below which the creep by
variations of environmental changes vanishes remains some-
thing to be tested in the lab. Furthermore, our generic results
suggest looking for particular models to describe specific types
of oscillatory perturbations, such as: particles with quasi-static
size oscillations (e.g., due to daily or seasonal thermal expan-
sion) as in ref. 19, clays with adhesion properties modulated by
humidity changes, and systems with oscillating confinement
geometries (e.g., periodically moving lateral boundaries). While
the specifics may vary, we expect the underlying physical
mechanism to remain qualitatively the same.
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Appendices
A. Simulation details and varying k protocol

The models used for both depinning and yielding transitions
have been presented in Section III. In this Appendix we provide
some details regarding the simulations and parameters used,
as well as an analysis of the frequency dependence of the
subcritical creep in the oscillatory k protocol.
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One specification to be made is that when working with
long-range interactions, i.e., in the elastoplactic model for the
yielding transition, we make use of a pseudospectral method.
This is, the Eshelby kernel is defined in Fourier space as

GY
q ¼ k

qx
2 � qy

2
� �2
qx2 þ qy2
� �2 (A1)

and from here the precise form in real space is obtained (see
eqn (6)). Then, at each step of the dynamics, the strain field
appearing in eqn (5) is converted to Fourier space and con-
voluted with the kernel. The result is anti-transformed to get
back the elastic interactions in real space.

For the disorder potential energy V(x) appearing both in
eqn (4) and (5) we have adopted a function which alternates
between parabolic wells and flat regions, as schematically
depicted in Fig. 14. All parabolas are taken to be identical,
defined by a unitary curvature and unitary width between the
starting and ending points of the wells. The inter-wells flat
regions, instead, are of different lengths, taken randomly from
an exponential distribution, uncorrelated from site to site. This
is the element that introduces randomness in the model. We
have also tested other types of disorder potentials, as for
example the direct concatenation of parabolic wells of different
sizes used in previous works.11,47 The observed physics does
not change qualitatively, but depending on the parameters the
sub-critical reptation region can be very narrow and visible only
very close to fc. The intercalation of wells and flat regions
somehow helps the elastic manifold systems to enhance the
oscillatory creep effect. As a matter of fact, notice that the limit
in which the parabolic wells become very narrow ‘traps’ corre-
sponds to the case in which we can build the equivalence between
the elastic manifold depinning-like models and the classic elas-
toplastic models of amorphous solids; these typically use a binary
‘state’ (elastic/plastic) variable for the model building blocks along
with the local stress.6 Therefore our V(x) choice lays in between
the ones typically used for depinning and for yielding and serves
well to show the sub-critical reptation effect in both cases.

For a given fixed value of k = kL in eqn (4)–(6) and f 4 fc one
can reach a stationary state after a transient by running a
simulation for a moderate time, depending on the initial
configuration. If the starting condition corresponds to a steady
state configuration obtained for a slightly larger force, the new
steady state is reached very fast, typically a few hundreds time
steps. In fact, that is what we do to obtain the flowcurves of

Fig. 3 and 6: we start at a large force, reach a steady state there
and then slightly decrease the force and run stabilization
periods at each step to take measurements in the steady states.

On the contrary, reaching a steady state in the oscillatory
protocol at f o fc is not that computationally cheap. First, we
have noticed that there is a strong dependency of the obtained
values of DX (eventually, even of f0) with the frequency (equiv.
period) of oscillation. Fig. 15 shows the frequency dependence
of DX in the case of the depinning model. If we want to work in
an adiabatic limit, the step of change in k should be small
enough to have results that are independent of it. Trying to
reach such a quasistatic limit, we have chosen the transition
between kS and kL to be very slow. We have found both for
depinning and yielding that a period of 20 000 steps was
enough to guarantee frequency-independence in our results
within error estimations of DX for most forces, and therefore
used that value along the study. Nevertheless, for different
system sizes, and in particular very close to fc, this quantity
should be adjusted to reach a frequency-independent steady
state value. Secondly, once the period is defined, one needs to
run a large number of cycles for DX and w to actually stabilize in
mean value. Typically we use a transient of 500 periods that
we discard to reach the steady state and then yet another 500
periods to take measurements and averages.

B. Other disordered potentials and exponents dependency

In order to check if the coincidence of the universality at f0 and
fc is a robust feature, we study a model using two different types
of disordered potentials, which give different values of the flow
exponent b in fully connected systems, namely ‘cuspy’ poten-
tials (b = 1) and ‘smooth’ potentials (b = 3/2).

In particular we work in this section with disordered poten-
tials of the form:

ViðxÞ ¼ Ai xþ fi � xþ fib c þ 1=2ð Þ2 for cuspy

ViðxÞ ¼ Ai sin xþ 2pfið Þ for smooth
(B1)

Fig. 14 Schematic representation of the typical disorder potential we use.
All parabolic wells are identical. Inter-wells segment lengths are taken
randomly from an exponential distribution.

Fig. 15 2D short-ranged depinning model. Dependency of the estimated
value of Dx on the period number p. System size is N = 512 � 512, kL = 0.1,
kS = 0.
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where the symbol I. . .m stands for the integer part of the argu-
ment, therefore producing a concatenation of parabolic pieces for
the cuspy case. The amplitudes Ai and the phases fi are site-
dependent quenched random variables, in the range [0 : 1].

The system is fully-connected, meaning that every site
interacts with each other with the same intensity, resulting in
a mean-field interaction where the elastic force on each site
is computed respect to the mean position X � N�1

P
i

xi. This

yields the equation of motion

@xi
@t
¼ �dVi

dxi
þ k X � xið Þ þ f : (B2)

This fully-connected mean field model can also be consid-
ered as an instance of the Prandtl–Tomlinson model of friction.
For this model, the values of b using cuspy of smooth potentials
are known to be b = 1, and b = 3/2, respectively.69 In this simple
case of mean-field interactions, the interface does not have a
diverging width at the transition, therefore the comparison of
criticality at fc and f0 will be limited to compare the values of b.

Fig. 16 and 17 present results of simulations of model (B2)
for cuspy and smooth potentials (B1), respectively. As expected,
reaching f = fc from above one obtains a velocity–force char-
acteristics that behaves as v B ( f � fc)b with b = 1 for the cuspy
potential and b = 3/2 for the smooth potential. What is inter-
esting is that in the oscillatory k protocol one can clearly
reproduce these same values around the corresponding f0 in
each case. These additional results, constructed with totally
different disordered potentials than in the maintext, provide
additional support to our main messages: (i) it is possible to
obtain a finite displacement below the critical threshold fc by
cycling the strength k of the elastic interactions, (ii) this
displacement vanishes at a new ‘critical’ point f0 but preserving
the critical exponents of fc, whatever they are according to the
kind of interactions, dimension and disorder type.

C. Analytical results in the mean field model

Many details of the mean field model can be worked out analyti-
cally. We describe here the kind of treatment that is necessary for
these calculations, and present a few results. In particular, we show
the existence of a range f0 � fc in which there is a cyclic advance of
the system upon oscillation of the value of k, and calculate the value
of DX in this range of applied forces.

As described before, the system consists of N particles that
move in a one-dimensional axis x under the action of a
potential consisting of a collection of very narrow wells, ran-
domly distributed along x (with a mean separation a, this
implies an exponential distribution of inter-well distances).
Potential wells have a maximum pinning force that they are
able to withstand, that we call fp, and is the same for all the
wells. A particle in a stationary situation can be located within a
well (as long as the force acting on it is lower than fp) or in the
region between two wells. In this last case, the position of the
particle is determined by the condition that the total force
acting on it must be zero.

In the present mean field representation the force acting on
particle i is

fi = k(X � xi) + f (C1)

with X ¼ N�1
P
i

xi being the average coordinate position of the

system. Note that this force is linear in xi (see Fig. 18). Given
any initial condition, upon setting a global f 4 0, all particles
advance to the right until an equilibrium is reached. This
occurs when every particle has either reached a well from which
it cannot escape and fi o fp, or, on its path to the next well,
has reached the position with fi = 0, and stays there. The
position x � xd where this happens has to adjust to the
condition f + k(X � xd) = 0. Therefore, particles that are outside
wells are all located at this same position. Introducing the
function P(x) that gives the probability distribution of finding a
particle at coordinate position x, a bit of analysis leads to the

Fig. 16 Velocity–force characteristics for the fully-connected system,
with k = kL = 0.1 and kS = 0 and a parabolic disordered potential. The
inset shows v vs. f � fc (fc = 0.212) and DX (arbitrarily rescaled) vs. f � f0 (f0 =
0.138). The full lines display the laws v B (f � fc,0). Data corresponds to a
system of size N = 512 � 512.

Fig. 17 Velocity–force characteristics for the fully-connected system,
with k = kL = 0.1 and kS = 0 and a sinusoidal disordered potential. The
inset shows v vs. f � fc (fc = 0.309) and DX (arbitrarily rescaled) vs. f � f0

(f0 = 0.253). The full lines line displays laws v B (f � fc,0)1.5. Data
corresponds to a system of size N = 512 � 512.
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conclusion that the P(x) consist of an exponential piece (origi-
nated in the exponential distribution of the inter-well dis-
tances), plus the delta peak populated by the particles that
are outside wells (see Fig. 18). The exponential part of P(x)
starts at the point defined as x � xp, where the force equals fp,
and extends to the point x = X + f/k where the force is zero and
where the delta peak locates. In other words, at fixed k and f,
particles outside wells are always the most advanced ones.

Let us consider the situation of a system driven just above
the critical force: f = f+

c. When f t fc, the most retarded particles
(namely most to the left along the x axis) are trapped in a well
and supporting the largest elastic force. In the continuous
evolution of the system, when f just overcomes fc and a finite
global velocity is set, those particles are the first to jump out of
their wells, given that all wells have the same pinning force fp.
When they jump out, they reach the next well to the right, or
stay at the point where fi = 0 if this happens before (to the left
of) the next well. Note that in the present case eqn (C1) implies
fp � fc = (X � xp)k. From its very definition, we also have
X ¼

Ð
xPðxÞdx. Introducing the form of P(x) and after a bit of

manipulation and combination with the previous expression
we obtain the value of the critical force as

fc = fp(1 � z + ze1/z) (C2)

with z � ka/fp.
Let us now analyze the case in which a value f o fc is applied

and the value of k is cycled quasi-statically between a large (kL)
and a small value (kS). For simplicity we describe the situation
when kS is zero (Fig. 19). Provided an initial condition in
equilibrium at a non-zero applied force f o fc pointing to the
right and k = kL, we start from a P(x) distribution similar to that
of Fig. 18. Reducing the value of k to zero does not affect the
position of particles that are located inside wells, but those that
were at the delta peak of P(x) now drift towards the right until
they find a new potential well. In the end, for k = 0 the P(x)
distribution becomes a pure exponential P(x) B e�x starting at

some given point x0. This is indicated schematically in
Fig. 19(a). Note also that from the history of the dynamical
evolution, given a particle located at a well at xi, we can be sure
there is no other well for that particle in the interval (x0, xi).
Now, when the value of k is increased again (k - kL), the elastic
force start to act on the particles. All those on the right of the
mean value X will feel a force pushing them to the left, and for
those with the largest values of x such force would overcome
�fp and they will jump out of their wells but now towards the
left. Because of the previous comment, those particles do not
reach a new well but regain a position in which fi = 0 for such
k = kL, creating a delta peak at a position that now is inter-
mediate in P(x) (those particles feeling a force 0 4 f 4 �fp

persist in their wells and have x 4 xd). Along this process, it
may happen (and it happens eventually, i.e., when f 4 f0) that
some of the left-most particles receive a positive force larger

Fig. 18 Schematic representation of the probability distribution function
P(x) for a system at the critical force fc. Note that P(x) consists of the
continuous black line plus the delta peak at the right. The red line shows
the x-dependent force on the particles fi, which is equal to fp at the left-
most point of the distribution, zero at the delta peak, and the externally
applied force f at X.

Fig. 19 Schematic evolution of P(x) for an applied force f (f0 o f o fc). (a)
Distribution at k = kS � 0. This is a purely exponential distribution. (b)
Distribution at k = kL. Some of the right-most particles in (a) have jumped
back to the position where fi = 0. Others from the left-most part have
move to the right. (c) Distribution when k is set back to kS � 0. The
distribution is similar to that in (a), but displaced to the right a distance DX.

Paper Soft Matter



This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 6307–6323 |  6321

that fp, and they jump to the right (dragged by a mean value X
that has moved forward in the previous step). The final distribu-
tion at k = kL is qualitatively seen in Fig. 19(b). Finally, when k is
turned to zero again, the process is repeated but with some
particles already advanced respect to the previous cycle. We
obtain the result in Fig. 19(c), namely a distribution similar to
the one in Fig. 19(a), but displaced to the right in an amount DX.

Based in the qualitative evolution just mentioned, it is
possible to calculate the value of DX given the value of kL.
The calculation is elemental, but a bit cumbersome. The out-
come is the following. First, one calculates z̃ from

f/fp = 1 � z̃ + (1 + z̃)e�2/z̃. (C3)

Then, DX is calculated from

f/fp = 1 � z + ze�1/z(1 � e�DX) + (2z/z̃ � 1 + z � zDX)e�2/z̃.
(C4)

The obtained DX( f ) curve is plotted in the left panel of
Fig. 12. In particular, setting DX to zero provides the minimum
value f0 necessary to observe the advance of the system upon
oscillation of k, which is

f0 = fp(1 � z + (1 + z)e�2/z). (C5)

This dependence was shown in Fig. 13.
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7 M. Popović, T. W. J. de Geus, W. Ji, A. Rosso and M. Wyart,
Scaling description of creep flow in amorphous solids, Phys.
Rev. Lett., 2022, 129, 208001.

8 C. Liu, E. E. Ferrero, K. Martens and J.-L. Barrat, Creep
dynamics of athermal amorphous materials: a mesoscopic
approach, Soft Matter, 2018, 14, 8306.

9 J. Weiss and D. Amitrano, Logarithmic versus andrade’s
transient creep: Role of elastic stress redistribution, Phys.
Rev. Mater., 2023, 7, 033601.
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