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Temperature dependence of fast relaxation processes in amorphous materials
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We examine the structural relaxation of glassy materials at finite temperatures, considering the effect of
activated rearrangements and long-range elastic interactions. Our three-dimensional mesoscopic relaxation
model shows how the displacements induced by localized relaxation events can result in faster-than-exponential
relaxation. Thermal activation allows for local rearrangements, which generate elastic responses and possibly
cascades of new relaxation events. To study the interplay between these elastically dominated and thermally
dominated dynamics, we introduce tracer particles that follow the displacement field induced by the local
relaxation events, and we also incorporate Brownian motion. Our results reveal that the dynamic exponents
and shape parameter of the dynamical structure factor depend on this competition and display a crossover from
faster-than-exponential to exponential relaxation as temperature increases, consistent with recent observations
in metallic glasses. Additionally, we find the distribution of waiting times between activations to be broadly
distributed at low temperatures, providing a measure of dynamical heterogeneities characteristic of glassy

dynamics.

DOLI: 10.1103/PhysRevMaterials.7.105603

I. INTRODUCTION

When we rapidly cool down a metallic or polymeric melt to
temperatures below the glass transition, the result is a highly
viscous, heterogeneous, and frustrated material that we call
an “amorphous solid.” Its nonequilibrium, topological, and
dynamical properties are part of one of the most salient open
problems in statistical mechanics and also in materials sci-
ence. From the viewpoint of the microscopic structure, some
regions of the material freeze in states with high local stress
barriers, and others are more easily prone to relax since they
correspond to soft regions close to instability. Although the
material appears now solid on long timescales and responds
elastically to small deformations, it may still exhibit measur-
able internal relaxation dynamics. The relaxation process that
develops and eventually alters the glass physical properties
involves a wide range of time, energy, and length scales, aging
processes, and sample preparation dependencies. Understand-
ing this spontaneous aging is of key relevance in the attempts
to control such mechanical degradation, for instance to man-
age these materials in industrial applications. This makes it a
relevant problem not only from a theoretical but also from a
practical point of view.

The complexity of a quiescent glass relaxation is usually
quantified by the way in which the so-called “dynamic struc-
ture factor” (viz. the intermediate scattering function) deviates
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from an exponential relaxation. In many cases, stretched
exponentials are observed, possibly resulting from a broad
distribution of relaxation times due to material heterogeneity.
However, the opposite situation of “compressed” relaxation
(faster than the exponential) is also observed experimentally
in various materials, such as metallic glasses or colloidal gels.

These compressed exponentials have recently been in-
terpreted within a framework that puts forward the elastic
response to local relaxation events in the material. The sug-
gestion is that, even when the bulk material has an intrinsic
elastic nature, the occurrence of localized and rather sparse
relaxation events can be enough to modify and dominate the
global relaxation behavior of the system. Each event leads to
an elastic response of the surrounding material and induces
thereby a long-range displacement field for the particles. An
experimental framework for the study of this unusual relax-
ation was first established by dynamic light scattering (DLS)
works in fractal colloidal gels [1-5]. More recently, x-ray pho-
ton correlation spectroscopy (XPCS) has been used to study
slow dynamics following the same spirit, but this time not only
“soft materials” such as colloidal suspensions [6,7], colloidal
glasses [8], and gels [9,10], but also hard-amorphous materials
such as metallic glasses (MGs) [11-13]. An overview of the
state of the art by 2017 in physical aging and relaxation
processes in MGs can be found in Ref. [14].

The structure factor in these experiments is extracted from
the time-averaged temporal autocorrelation function of the
scattered intensity g% (q.t) = (I(g. T)I(g, T +1))/{(q)),
where I(q, t) is the intensity of the signal measured with the
corresponding scattering technique. f(g, t) is related with g®
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through the Siegert relation
§2(q.1) = 1=«klf(q.0. M

The common feature observed in several experiments is a
structure factor showing a compressed exponential behavior
in time ¢ and scattering vector g [4,14]:

f(g.t) ~ exp[—(t/t/)"1, 2

with 7y ~ g™, n~ 1, and B > 1. The observed dynam-
ics was a priori unexpected, not only because of such a
faster than exponential decay of the correlations but also
because it contrasts with the usual diffusive behavior at
long timescales (t; ~ ¢g~2) found in molecular-dynamics sim-
ulations of most glassy systems. It should be mentioned
that, although these measurements are performed in an ag-
ing system, the compressed relaxation is not intrinsically a
nonequilibrium feature. In general, experiments are focused in
a time-window where the waiting time dependence can be dis-
regarded, and the age of the material can be considered fairly
unchanged during the measurement. Moreover, cyclic shear
experiments [15] showed that these compressed-exponential
relaxation dynamics associated with ballisticlike motion is
observed even in a well-controlled stationary state. Note that
even in these examples of stationary dynamics, a dynamical
competition of timescales remains present, which we show
to be a possible origin of compressed exponential relaxation.
In the stationary setup (without any applied deformation),
thermal agitation causes Brownian motion of the individual
particles within their cages, and eventually local relaxation
events are triggered by thermal activation. The elastic re-
sponse to these events can induce further relaxation events
by destabilizing new regions that were already close to in-
stability. Higher temperatures not only induce more and more
frequent relaxation events but also increase the diffusion of
the particles. As we will discuss, the interplay between ther-
mal Brownian motion and the persistent motion induced by
elastic displacement fields due to localized relaxation events
affects and quantitatively determines the relaxation process. In
particular, this competition leads to an effectively temperature-
dependent exponent § in the compressed exponential behavior
of the dynamical structure factor f(q,t) ~ exp[—(t/ ‘L'f)ﬁ].

A. A literature overview

The idea that relates compressed exponential behavior of
f (g, t) with the elastic response to localized relaxation events
was introduced by Cipelletti et al. in [1]. It was later re-
formalized by Bouchaud and Pitard within in a mean-field
scenario [16—18]. In [19] some of the authors of the present
manuscript proved this scenario to be valid in finite dimen-
sions (2D) within simulations of a mesoscopic model for the
relaxation dynamics of glassy materials. Although the local
rearrangements leading to relaxation of the material are in
general not individually assessed in the experiments, their
relation with the compressed exponential behavior has been
widely acknowledged.

Luo et al. [20] explored a wide temporal and temperature
range in the relaxation of three typical Zr- and La-based
metallic glasses (MGs). They directly measure the stress by
applying a small tensile deformation on MG ribbons and

follow its relaxation in time. They find a gradual change of the
relaxation profile from a single-step to a two-step decay upon
cooling. They relate the first faster relaxation process to the
anomalous stress-dominated microscopic dynamics, and the
secondary slower one to subdiffusive motion at larger scales
with a broader distribution of relaxation times. For this stress
relaxation, they also observe compressed exponentials as soon
as T < 0.97,, where T, is the glass transition temperature.

In [21], Amini et al. studied structural relaxation a bulk
metallic glass forming alloy. Upon heating across the glass
transition, the intermediate scattering function (ISF) changes
from a compressed to a stretched decay, with a smooth
variation of the stretching exponent and the characteristic
relaxation time. The authors relate this to a progressive transi-
tion between the stress-dominated dynamics of glasses and the
mixed diffusion and hopping particle motion of supercooled
alloys. In this study, compressed exponentials are observed
below T, in agreement with [11]. This is when the metallic
alloy responds as an amorphous solid, and localized relaxation
events, akin to shear transformation zones (STZs) in sheared
amorphous solids, can produce persistent displacements in
their surroundings, i.e., relating again the compressed ex-
ponential behavior of f(q,t) with the elastic response to
localized relaxation events [1].

Interestingly, a very recent work by Song et al. [22] investi-
gates again the kind of soft matter systems where compressed
exponential relaxation was first reported. By analyzing micro-
scopic fluctuations inside an arrested gel, they differentiate
among two distinct relaxation mechanisms: quiescent relax-
ations governed by the buildup of internal stresses during
arrest, and perturbation-induced avalanche relaxation events
governed by mechanical deformations in the system. In the
quiescent case, when internal stress heterogeneities generated
during arrest are released, they cause local strain propagation.
In this gel, these rearrangements caused by the prestressed
states are even considered to be athermal, with an occurrence
rate exceeding strongly that of thermally activated rearrange-
ments. XPCS on the arrested gel probed at quiescence shows
a second-order correlation function g,(q,t) decaying as a
compressed exponential function of (¢'%t) in a range of ¢
values, with a compressed exponent 8 ~ 1.57. The notion that
intermittent plastic activity happens due to mechanical aging
and relaxation of prestresses more than thermal activation can
also be found in metallic glasses [13].

Still, it should also be mentioned that the compressed ex-
ponent behavior is not always said to be related to relaxation
of inner stresses. In Ref. [23] the authors studied a system
of polystyrene spheres in supercooled propanediol. By means
of multi-speckle-dynamic light scattering experiments, at low
temperatures, compressed exponential decays are observed.
The speckle pattern indicates convection in the sample due
to a slight temperature gradient across the sample cuvette
mounted in a cold finger cryostat. The authors attribute the
compressed exponentials to such convection, an effect that
increases with decreasing temperature.

On the modeling side, the phenomenon of compressed
exponential relaxation has also been discussed recently, both
in the gel context as well as for hard amorphous materials. In
a work on a gel created as a kinetically arrested phase sep-
aration, it has been shown that its relaxation is accompanied
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by superdiffusive particle motion and compressed exponential
relaxation of time correlation functions [24]. Spatiotemporal
analysis of the dynamics reveals intermittent heterogeneities
producing spatial correlations. Another work on gel relaxation
in a network forming attractive gel showed similar behavior
when local bond breakings were induced by hand [25]. The
authors evidenced a crossover of the shape exponent from
compressed to stretched exponentials as a function of tem-
perature pointing towards a competition between Brownian
motion and elastic effects through the relaxation of internal
stresses. On the metallic glass-former materials side, simula-
tions in [26] showed that the relaxation dynamics is directly
related to the local arrangement of icosahedral structures:
Isolated icosahedra give rise to a liquidlike stretched expo-
nential relaxation, whereas clusters of icosahedra lead to a
compressed exponential relaxation.

Recently, Ref. [27] revisited the idea of elastically inter-
acting local relaxation events [1,16] in an analytical atomistic
approach, and discussed both slow stretched-exponential re-
laxation and fast compressed-exponential relaxation, the latter
being related to the “avalanche-like dynamics” in the low-
temperature glass state. Based on Arrhenius-type activation
of stress-relaxation events (similar to [19]), their model—
already at the mean-field or “one-site” approach—evidences a
temperature dependence in both the stretched and compressed
behavior regimes.

B. Our work

In this work, we first confirm through the numerical study
of a simple three-dimensional lattice model that compressed
exponential relaxation can result from elastic relaxations re-
sponding to thermally induced local rearrangements akin to
shear transformations observed in yield stress materials with
external driving [28-30].

We use a three-dimensional elastoplastic model of amor-
phous solids (described in Sec. III) together with the construct
of imaginary tracer particles evolving in parallel. These par-
ticles follow the vector displacement field generated by the
elastoplastic model, associated with the stress response to the
thermally induced plastic activity of the modeled material.
The particle trajectories are then used to calculate both the
mean-square displacement and the dynamical structure factor.

Our results show that for sufficiently short times there is
a superdiffusive regime in the mean-square displacement of
tracer particles, after which we enter a crossover regime to-
wards diffusive behavior. Note that we refer to short and long
times here within our coarse-grained elastoplastic description
[31]. The crossover is dominated by the typical duration of
plastic events. In addition, a compressed exponential relax-
ation, reminiscent of experimental observations, is obtained
in the dynamic structure factor associated with the superdif-
fusive (ballisticlike) regime. At long times, in the diffusive
regime, the relaxation is instead exponential. Furthermore,
we analyze in more detail the relaxation dependency on the
temperature. The presence of finite temperature that allows for
the activation of plastic events also generates thermal agitation
that competes with the persistent movement on short times
[25]. We observe that temperature modifies the crossover
between superdiffusive and diffusive motion and effectively

generates an intermediate range of values for the exponent
B of the structure factor decay. Hence, our model allows for
a theoretical interpretation of recent observations in metallic
glasses [11,21]. We discuss this phenomenology presenting
results and scaling laws for the mean-square displacements
(r?) of tracer particles, the displacement distributions P(u) in
different time windows, the distributions of reactivation times
of local plastic activation W(ty), and the dynamical structure
factor evolution S(z).

Originally inspired in the dense phase of athermal amor-
phous materials, elastoplastic models [32] are not a priori
expected to capture the physics of the glass transition. Yet,
building on the idea that highly viscous liquids should be
considered as ‘“‘solids which flow” [33-35], recent endeav-
ors have revealed that simple elastoplastic models (EPMs)
with thermal activation of plastic events are able not only to
reproduce compressed exponential relaxation [19], but also
other features of glassy dynamics, such as dynamical hetero-
geneities and the emergence of dynamical correlations [36],
precisely due to the mediation of elastic interactions in the
material. Within this context, it seems thus justified to argue
that the low-temperature limit of our model mimics reason-
ably well the relevant relaxation processes in the low-7" phase
of glass-forming liquids. In this picture, relaxation is dom-
inated by displacement fields rooted in elasticity and local
rearrangements. At higher temperatures it is the increasing
Brownian motion of particles that leads to the breakdown of
the elastoplastic picture, localization and activation (the main
features of glassy glassy dynamics) become more and more
irrelevant, and we enter the dynamics of high-temperature
supercooled liquids.

Section II is a summary of the mean-field arguments for
the elasticity-mediated compressed exponential phenomenon.
Although important for the general understanding of the im-
portance of elasticity in the relaxation processes, this part is
not directly needed to access the main part of this manuscript
describing our work on the spatially resolved elastoplastic
modeling.

In Sec. IIT we present our elastoplastic model and the con-
struction of the tracer particles for the particle displacements.
Section IV presents our findings, and we conclude in Sec. V.

II. MEAN FIELD ARGUMENTS

In [1], an heuristic explanation for the phenomenon of
compressed exponentials was first introduced, based on the
“syneresis” of a gel. Syneresis is a spontaneous contraction
of a gel, which occurs locally, accompanied by expulsion of
liquid from a pore. The gel shrinks. Such mechanical inhomo-
geneities act as local dipole forces with a long-range elastic
impact on its surroundings, creating a complex deformation
field [1]. The argument leading to the justification of a com-
pressed exponential observation in the dynamical structure
factor goes as follows.

The displacement field # due to an inhomogeneity (a
syneresis event) at a distance r reads

u~ etV /ri 3

where V is an estimate for the volume of the region involved
in the syneresis, €(¢) is the evolving strain on that region,
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FIG. 1. Schematic figure that shows that given a spatial configu-
ration of particles (# = 0), if the particles move, the structure factor
decays until this system decorrelates the initial condition in a time ¢
(adapted from a slide by B. Ruta).

and d is the dimension of the system. If the inhomogene-
ity is placed at the origin, the generated displacement field
decays algebraically. The observable that we are interested
in measures spatial correlations at two different times, and
corresponds to an overlap function.

Given an initial configuration of particles, as depicted in
Fig. 1, the structure factor f(¢, g) would stay close to f(t =
0, g) = 1 if the particles do not move, and will drop all the
way down to 0 if the configurational correlation with the initial
condition is completely lost at time ¢. Due to the intensity
decay of the displacement field, the particles closer to the in-
homogeneity will move stronger and lead to a strong decrease
of the spatial correlations. If we are observing the system at a
typical space resolution of g~' (akin to using light scattering
techniques with a wave vector of modulus ¢) and we ask for
u < g~ to consider that something has basically “not moved”
at that lengthscale, we need it to be at a distance to the closest
dipole equal to or larger than

Fain = [gAOVI]7T. @
This simply accounts to inverting Eq. (3) and introducing
Ac(t) ~ g 'e(t) as a measurable linear displacement. The
distance to the closest dipole will depend on the density of
syneresis events. Assuming an inhomogeneity concentration
¢ in a system volume in dimension d, we can expect the
probability of being further than a distance ry;, to any inho-
mogeneity to decay as

P(rpin) >~ exp [—cr;fin] >~ exp [—c[qu(t)V]]ﬁ]. (&)

Notice that P(ryin) = P, (g, t) is already a good proxy for
f(g, 1), since a higher probability of being away from any
strong field distortion means higher preservation of corre-
lation at a given time. So, one can propose fus(q,t), the
“mean-field” dynamical structure factor, to be fu:(q,?)
P...(g,t), and assuming that the local strain within the inho-
mogeneity varies linearly in time €(¢) ~ at, we get

Jut(g, ) o exp[—(t /7)™ ] ©6)

with 7, = ¢=“=D/4(V,aq)~" emerging as a characteristic re-
laxation time. Notice that 7, o< g~!, which is typical of a
persistent motion. Generalizing Eq. (6) to three dimensions
(d = 3), we have

fuz(g, 1) o< exp[—(t/7,)*?], (7

which is already giving a possible explanation for the com-
monly seen exponent § =~ 3/2 fitted from experimental data
when assuming compressed exponential decay at a time of
f mf (6]1 t )

This idea was taken by Bouchaud and Pitard to build a
mean-field model to predict the anomalous relaxation phe-
nomenon [16-18]. They have taken into account that the local
deformation stops at some point, and they included a new
relevant timescale 8, corresponding to the duration of a plastic
rearrangement. They analytically compute

fue(g, 1) = (exp{iq - [u(r, 7o + 1) —u(r, 0)l})  (8)
and extract the relevant regimes

ift €0,

exp[—a(qt)’/?]
.fmf(q’t) 08 { lf[ >> 9’

expl—aq(q’*1)]

where a;, and a;, are constants. The ¢*/?> dependence reflects
the fact that the distribution of local displacements u decays
as u~>/? and therefore has a diverging variance [18]. One can
see that in the case of very high plastic activity (or tempera-
ture), the P(u) ~ u~>/? heavy tail is always suppressed, and
therefore we recover the usual ¢> dependence in the diffusive
regime.

Notice that the mean-field description of Bouchaud and
Pitard [16] always predicts a purely ballisticlike scaling
between space and time ¢! oc ¢ in the regime where corre-
lation functions decay as compressed exponentials. Further,
the presented mean-field approach predicts no temperature-
or g-dependency for the compressed exponent. In experi-
ments, however, temperature- or g-dependency are commonly
reported and two clear trends appear in the experimental
literature:

(i) On the one hand, frequently a g-dependence of 8 is
reported [5,6,11,12,37,38] and along with that the q_1 o« t
relation is broken. In particular, the physics is better described
by [6]

f(g.t) o exp[—c(g“t)F]. )

Clearly, spatial correlations among plastic events play a role
in the relaxation dynamics. Already, an improvement in theo-
retical predictions is seen when intermittency of plastic events
is taken into account (versus a continuous ballistic process).
In [5], Duri et al. showed that a model of intermittent dy-
namics can predict a g-dependency of S. Using a Poisson
distribution for P;(n), the probability that n plastic events
affect the scattering volume during a time span t, they are
able to justify their observation of a § ranging from from
1.5 to 1 in the dynamic light scattering of a colloidal gel for
increasing g. The variation of B with ¢ was also observed at
low temperatures in glass-forming liquids [6].

(i) Another ubiquitous observation is the dependency of
the shape exponent 8 with temperature [6,11,20,21]. It has
been seen that 8 decreases systematically as temperature is
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increased. Furthermore, in [11,21] it is suggested that the
compressed-exponential behavior of f(q,t) is lost when ap-
proaching the glass transition temperature 7, estimated from
calorimetric measurements of the metallic glasses alloys. Al-
though it is intuitive to assume that the melting of the material
leads to a loss of the solid support and therefore elastic per-
turbations induced by localized plastic events cease to exist,
it might not be the only reason for losing the compressed-
exponential behavior. For instance, thermal agitation could
start being relevant much before the melting of the glassy
mixture, and, on the other hand, there is numerical evidence
for the subsistence of Eshelby events in the supercooled liquid
phase [28,39,40].

In fact, the temperature dependence of the relaxation re-
mains an open issue on the theoretical side. It has not been
discussed in the previously quoted mean-field-like approxi-
mations, and only recently included in a related analytical
approach [27]. We address such an elasticity-temperature in-
terplay in the present work in a fully spatial description.

III. MODEL

In the past decade, different coarse-grained approaches
have been developed to help in the understanding of amor-
phous solids under deformation [32]. Such lattice-based
models known as “elastoplastic” (EP) have the advantage
of being capable of addressing larger-scale statistics of the
dynamical phenomena related with plastic deformation in
amorphous solids than the one provided by (more “realistic’)
off-lattice particle-based models. If we want to describe a
material with a given extension and in a given time-frame,
the computational demand is, of course, much larger for
a particle-based approach. The coarse-graining solves that,
allowing us to address length- and timescales that involve
several shear-transformation-zones (STZs) to study their in-
terplay and statistics.

Yet an automatic drawback of EP models is the absence
of “particle coordinates,” from which many common observ-
ables are usually defined. By construction, EP blocks are
supposed to describe a region or patch of the material, involv-
ing several particles, where a STZ or “plastic event” can take
place. A way to overcome this limit, while still keeping the
enormous functionality of EP models in the statistical descrip-
tion of amorphous materials, is to construct a parallel system
of lattice-free tracer particles. These pointlike particles will
follow the instantaneous displacement fields derived from the
EP-model, and provide us with virtual particle-coordinates
and configurations that we can use to define quantities such
as the mean-square-displacement and the dynamical structure
factor. Assuming that localized relaxation events perturb the
surrounding material leading to a stress redistribution in the
form of an Eshelby response, one can convolute the simulta-
neous action of several plastic events occurring in different
locations to work out the displacement field u(r) that they
induce at any place in the system. Of course, the resolu-
tion of the corresponding displacement field is given by the
coarse-graining of the elastoplastic lattice dynamics, but once
we derived it we can ignore the lattice for the movement of
tracers. This construction was used in [19] for the study of a
two-dimensional (2D) system; we extend it here to the case

of three dimensions and add a thermal noise to the dynamics
of tracers in a way fully compatible with thermal activation of
plastic events in the background EP model.

A thermally activated and spatially symmetrized
elastoplastic model

An amorphous material is represented by a coarse-grained
scalar stress field o (r, t), at spatial position r and time ¢t under
an externally applied shear strain. The space is discretized
in patches or blocks. At a given time, each block can either
be elastic (“inactive”) or plastic (“active,” i.e., locally relax-
ing). This state is defined by the value of a binary variable:
n(r,t) = 0 for inactive, n(r,t) = 1 for active. A huge model
simplification consists in passing from a fully tensorial de-
scription to a scalar one, for example by assigning all the
plastic deformation to one scalar component of the deviatoric
strain. While this approach is analytically justified in the case
of sheared materials (e.g., [41]), we would need here to take
into account the tensorial character since we do not have any
symmetry-breaking external applied deformation. To be able
to keep a simple scalar description, we decided to symmetrize
the response in the three possible shear “directions, not favor-
ing one spatial coordinate over the others.

We define our EP model in three dimensions discretized on
a cubic lattice of N = L, x L, x L; blocks, with the stress o;
on a generic block 7 subject to the following evolution in real
space:

doi(t) oi(1) (1)

o ——goniT-i-;Gijnj(l) t (10)

where gy > 0 sets the local stress dissipation rate for an active
site, the time-dependent local state variable n; = {0, 1} indi-
cates if a site is undergoing a plastic event [active (n; = 1)
or inactive (n; = 0)], and the kernel G;; is the Eshelby stress
propagator [42]. In most EPMs, &;(¢) is simply o;(¢), the
stress at site j. Yet in this case we have used &;(t) = e,
where the sign (£) indicates whether the plastic activation has
occurred in a positive (+4) or negative (—) stress threshold, and
€0 quantifies a fixed intensity for the Eshelby event during the
plastic event. Furthermore, notice that typically a uy°** term
(with w the shear modulus and y°** the externally applied
strain rate) appears on the right-hand side, but in our case it
is identically zero (no external driving).

The form of G in d = 3 can be more easily expressed in
Fourier space,

_Aq/q5 + (9 + 90 + 93)

G® = (1)
q 2
(a7 + a3 +a2)
for q # 0 and, in our scheme of nonconserved stress,
G0 = —K (12)

with ¥ a numerical constant set to 1. The subindices [/, m, n of
the wave vector q components in Eq. (11) are set to different
possible permutations of the system coordinates x,y, z, as
explained later. The last term of (10) constitutes a mechanical
noise acting on o; due to the instantaneous integrated plastic
activity over all other blocks (j # i) in the system. The elastic
(e.g., shear) modulus © = 1 defines the stress unit, and the
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mechanical relaxation time T = 1 defines the time unit of the
problem.

1. The thermal activation rule

The picture is completed by a dynamical law for the lo-
cal state variable n; = {0, 1}. In the athermally driven case,
a plastic event occurs in block i (n; : 0 — 1), with certain
probability [43], when the local stress o; overcomes a local
yield stress oy;. In the current work, the driving is absent
and is replaced by thermal activation. When 7' > 0 we expect
activation to occur with a finite probability even if |o;| < oy;,
where now we should equally consider the probability of
yielding when a block builds a sufficiently large “negative”
stress. In particular, we use the following rule for sites acti-
vation: n; : 0 — 1 as soon as |o;| = oy;, or, at any time with
probability

Pact(T) = e~ Blovi—loil)* /ksT (13)

when |o;| < oy; [44]. We have chosen for simplicity oy; = 1
for all sites (and kg = 1). We checked that the use of dis-
tributed stress thresholds does not change qualitatively our
findings (see Appendix B). The factor B can be seen as a mea-
sure of local structural weakness and therefore considered a
material-dependent parameter. In our model, it remains a free
parameter that we control. In the following, we set @ = 3/2,
taking into account the discussion in [43,45] which identifies
it as the exponent expected for smooth energetic barriers and
the most comparable one with atomistic simulations and ex-
periments [46]. Finally, an active block i becomes inactive n; :
0 < 1 at a constant rate 7' (i.e., with probability dt * 7!,
where dt is the time integration step). The prescribed time 7
is the “lifetime” of an active event, and the previous stochastic
rule guarantees that, on average, plastic events have such a
duration. The value for 7., is also not fixed and remains a free
model parameter.

2. Symmetrized elastic propagator and strain events

In the absence of an external shear, there’s no preferred di-
rection for an Eshelby event. In principle, we should consider
that the local shear transformations take place in arbitrary
orientations and angles. This apparently ingenuous statement
can largely complicate the numerical implementation of the
model, and it is unnecessary for our purposes. Even though a
bit less realistic, for simplicity we have chosen to preserve the
symmetry only between the three principal shear planes of our
d = 3 sample geometry xy, yz, zx. We define not one but three
different propagators related to these shear planes: Eq. (11)
with three index permutations for (I, m, n): (x, y, 2), (, Z, x),
and (z, x, ). When the criterion for local yielding is met, one
shear plane is chosen randomly and that site will be shear-
transforming in that orientation only during its activity period.
The next activation of the same site can occur in a different
orientation. In this way, we maintain a single local scalar
variable representing the stress on each block, despite the
introduction of various possible orientations of a plastic event.
Moreover, the absence of an externally applied shear restrains
the system to plastic activity only induced through a “thermal
bath.” Local stresses are close to Gaussian-distributed around
zero and the width of the distribution increases with 7' (see

Appendix A). In a sense, our system enters after a transient
dynamics depending on the initial state, always in thermal
equilibrium. In the absence of externally applied deformation,
we associate with a plastic event a characteristic strain rather
than a characteristic stress [19] as is usually the case for
EPMs with driven dynamics. As mentioned, in practice ;(t)
in Eq. (10) is defined as

&i(1) = £peo (14)

if the site is active, where the sign (4) depends on the plastic
activation occurring at a positive (4) or negative (—) stress
threshold. €, constitutes a parameter of our model and quan-
tifies the intensity of the Eshelby event; it can be seen as the
€V) in Eq. (3).

3. Displacement fields and tracer particles

The yielding of a block in different shear planes will give
rise to displacement fields in the rest of the system, which
we capture using the Oseen tensor components, following and
generalizing [42]. In Fourier space:

(q) = O(q) - (2inq - &). (15)

u(r) [the real-space counterpart of u(q)] is the vectorial dis-
placement field, ep(r) is a plastic strain shear-component
[€p1; = 16/, the strain related to the stress multiplying the
propagator in Eq. (10)], and O(r — r’) is the translationally
invariant Oseen tensor:

0(q) = %(I - %). (16)
Hnq q

Given an instantaneous configuration of the system’s plas-
tic activity (with its complexity of three possible local yielding
directions for each block), one can convolute the different
contributions given the active blocks to the displacement field
at any position in the system by using Eq. (15) in Fourier
and then transforming u(q) to real space. Here we consider
for the shear components of O(q) the same three possible
permutations that we used for the propagator G4. Notice that
for a more detailed description one would need to be careful
about the displacements in an event’s core region, which fol-
low a different (exponential) decay [47]. Here we had simply
taken the precaution of setting things such that a plastic event
has a negligible effect in the displacements of tracers that are
transiting its own cell and only affect the tracers outside the
event’s core.

With this, tracer particles are simulated in parallel to our EP
model evolution, simply following the displacements fields.
A set of M probe particles initially located at random in
the cube (L, Ly, L;) simply follow the EP-model-generated
displacement fields updating the position &, for tracer s by

& — & +u()dr a7

on its three scalar components. We call these “athermal trac-
ers,” since temperature does not step in explicitly in their
dynamics. This is modified in Sec. IVB when we include a
thermal noise acting on the tracers.

From the movement of these tracer particles we will com-
pute most of our quantities of interest. In a real system, the
particles tracked are real particles. Therefore, for example,
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FIG. 2. Mean-square displacement as a function of observation
time window. The main plot shows the MSD (r?) rescaled by the
mean activity (a) for seven different activities/temperatures as indi-
cated in the labels, The gray solid and dashed lines are guidelines to
show the ballistic (~¢) and diffusive (~¢) behaviors. The inset shows
(r?) unscaled. The plastic events duration is 7o, = 1.5, € = 1.0,
L =32

dilation occurring inside the STZs will contribute to particle
displacements [48]. Our approach disregards those contri-
butions; we work with pointlike “virtual” tracers that only
take into account displacement fields generated by the long-
range elastic response, without any sort of volume-excluded
interactions.

IV. RESULTS

In this section, we present the numerical results for the
relaxational dynamics of our quiescent EP model at finite tem-
perature. All results correspond to steady-states, which due to
the absence of external driving can be considered as being
equilibrium states, as discussed in [19]. In a real material at
rest (quiescent), the plastic activity might decrease (and even
stop at some point) when the residual stresses of the material
preparation are exhausted. Here, we perform measurements at
fixed temperatures or fixed plastic activity levels and do not
consider any material aging in the long term. We therefore
expect our results to be comparable to the cases in which a
given level of plastic activity is maintained in experiments or
atomistic simulations during the measurements.

A. Thermally induced plastic events for “athermal” tracers

We start by discussing the extension to three dimensions
of the results presented in [19]. A finite temperature rules
the rate of plastic activity resulting in the displacement of
tracer particles, but those tracers move just according to the
displacement fields without any other perturbing force.

1. Mean-square displacement

Figure 2 shows for different temperatures the mean-square

displacement (MSD) defined as (r?) = }%] >, r?, where
r; = |ri(to +t) — ri(ty)| is the distance traveled by tracer i in
the time-lapse ¢, and the overline indicates an extra average

using sliding time windows by moving 7, in the stationary
state. Tracer particles move following the vector displacement
field u(r, ¢) [Eq. (15)]. Data correspond to cases of seven dif-
ferent mean plastic activities (a) ~ [4 x 1075,1 x 1074, 5 x
1074,2 x 1073, 0.02, 0.14, 0.3] resulting from temperatures
T ~[0.03, 0.035, 0.04, 0.05, 0.08, 0.16, 0.27],  respec-
tively, and B = 1. For a given temperature, we observe
that (r?) behaves ballisticlike (~t*) if the time window
observation is small, and diffusively (~t) for larger time
windows. The characteristic timescale separating these two
regimes is the duration of the plastic events t., (which for data
in Fig. 2 is 7o, = 1.5). What is identified as “ballistic”” here is
nothing but a regime dominated by the persistent motion of
tracer particles during the elastic response in a given direction
each, with little or no deviation. Beyond the persistent time
controlled by 7.y, particles diffuse. As expected, larger plastic
activities lead to larger plastic displacements and larger

effective diffusion coefficients Dgss = % at long 7. In the
main-plot of Fig. 2 we are able to collapse all curves when
normalizing the MSD by the mean plastic activity (r?)/(a),
where (a) = (% > _;n;) and (-) denotes average over time.

It is worth clarifying something again about the persistent
regime observed here. In the relaxation of glasses, a so-called
B relaxation takes place first, inside the cages formed by the
frustrated material. At times smaller than the beta relaxation
time, the mean-square displacement can display a true ballistic
regime where particles move freely within their cage. EPMs
do not catch such a microscopic dynamics; they are defined
at a mesoscopic level. All the relaxation presented in this
work should be related to a relaxation occurring far beyond
the B relaxation, at much larger time- and lengthscales. The
tracer displacements we consider are the result of the elastic
response to plastic events that in real systems can involve up
to a few dozen particles. As already suggested in [19], we be-
lieve that the EPM approach catches the relevant lengthscales
where compressed relaxation is observed in experiments. And
by that we mean the regime of wave vectors comparable to the
typical core size of a local relaxation event in the material and
at times related to the typical duration of those events.

2. Dynamical structure factor

We further compute the main observable of the relaxation
dynamics, the dynamical structure factor S(g, t), analogous of
Eq. (8):

1 M
S(g.1) = A—4<ZC°S (g [ra( +10) — rn<ro)]}>, (18)

n=1

which is a measure of the decorrelation of tracer particles
positions in time with respect to an initial configuration. Here
M is the total number of tracer particles, and the brackets
indicate a sliding time-window average with different #, and
the different discretized wave vectors q that share the same
modulus g. In fact, we find it easier to get averaged curves
at fixed times ¢ rather than at fixed g values. It is worth
mentioning that although we are computing a self-ISF in the
definition of Eq. (18) from tracers that do not interact with
each other, they all follow displacement fields that are a result
of the collective behavior of plastic events [49].
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FIG. 3. Dynamical structure factor S(g,t) relaxation for low
plastic activity and short times (in the ballistic regime). The inset
shows S(q, t) as a function of ¢? for time windows up to ¢ = 100,
while the duration of plastic events is 7., = 20. The main plot col-
lapses the curves corresponding to time-windows ¢ < Ty, plotting
S(g,t) as a function of g"'t. A compressed exponential behavior
S(q,t) o exp[—A(q''t)P] is fitted with B >~ 1.58 (blue curve). T =
0.02, ¢y =0.1,L = 32.

Figure 3 shows the dynamical structure factor for curves
corresponding to short times (¢ < 7oy). This means that the
data displayed are collected from the persistent tracer move-
ment regime. To observe such a regime clearly, we have set
a large event duration, 7., = 20, which in turn enforces a
reduction of the parameter €y in Eq. (14) in order to maintain
the mean activity at low levels ({a) = 0.05). Here ¢y = 0.1
has been used. A collapse of different curves can be seen
when we plot S(q, t) versus (¢"'t), and S(g, t) presents the
shape S(q,t)ocexp[—A(g*t)P], with a ~ 1.1, B ~ 1.58. In
this short time regime, therefore, we observe (i) t, ~ q‘l,
typical of ballistic processes, and (ii) a compressed shape
exponent § in the range expected from experiments [1] and
close but different from mean-field theory [16,18]. It is worth
mentioning at this point that at times above and compara-
ble to 7.,, compressed exponentials are still observed. Yet,
the fitted exponent 8 becomes smaller and smaller as larger
time windows are considered. We have concentrated here
on the short-times, below the rearrangement duration, time
to estimate B because that is the regime where a stabilized
exponent and a good collapse of curves for different times can
be found.

In Fig. 4 we show the dynamical structure factor for curves
corresponding to long times (f > Tey). Without a lack of
generality, here we have used the data for 7., = 1.5 to show
comparatively much larger times. At observation windows
t > 7oy, We always expect to observe diffusion. Here, we see a
collapse in the curves for times up to r = 1000 when we plot
S(g,t) as a function of ¢*?¢. The shape of the relaxation is
now a simple exponential (8 = 1) S(g,1) o exp[—A(g*/%t)].
This is consistent with the mean-field prediction [16]: For
d =3, 1, ~ g~ is expected for a diffusive process [16,18]
[see Eq. (7) for the 7, definition]. Yet, at much longer times the
1, ~ q~3/? scaling breaks down. As explained by Bouchaud
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FIG. 4. Dynamical structure factor S(q,t) relaxation for low
plastic activity and long times (in the ¢*/*t diffusive regime). The
lower-inset shows S(g, t) as a function of ¢ for time windows up to
t = 10000. The duration of plastic events is 7., = 1.5. The main plot
and upper-inset collapse the curves corresponding to time-windows
Tey <t < 1000, plotting S(g, t) as a function of ¢g*/?¢. A pure expo-
nential behavior S(g, t) o exp[—A(g*/?t)] is fitted. T = 0.04, {a) ~
0.0005, €p = 1.0, L = 32.

[18], q3/ 2 reflects the fact that the “distribution of local dis-
placements” P(u) has a diverging variance. For a distribution
with a finite variance, one would recover the usual q2 de-
pendence in the exponential relaxation. As we show in the
next section, P(u) always has an upper cutoff. Therefore, it
is not surprising that dynamical structure factors measured
over very long time windows already sense that finite variance
and deviate from the 7, ~ ¢g~%/? scaling. Moreover, the u~>/>
tail is completely suppressed at higher plastic activities. This
is a simple consequence of the central limit theorem. The
response in the high activity regime is composed of a sum of a
large number of random variables drawn from a distribution,
which presents a cutoff at large displacements due to the finite
core size of the plastic events. In this case, the S(q,t) ~
exp[—Aq*/*t] regime completely shrinks to give place to a
“purely diffusive” regime S(g,t) ~ exp[—Ag’t], such as the
one observed in Brownian motion, already at time-windows
10 times larger than t.y. This is shown in Fig. 5, where we
use Tey = 1.5and T = 0.16 ((a =~ 0.15)).

3. Displacements distribution

As already mentioned, another quantity of interest is the
characteristic displacement u of a tracer particle in a given
time window. More generally, we are interested in its distribu-
tion P(u) at different temperatures.

In the limit of low temperatures (small plastic activities),
we expect these displacements to be ruled by the fields gen-
erated by a few plastic events. We know that a plastic event
induces a displacement u ~ 1/r?~!, like a dipole. Close to a
plastic event tracers will move a lot, large u, but statistically
there will be more tracers further away from the event. More
quantitatively, the probability of “seeing” a plastic event at a
distance between [r, r + dr] when sitting on a random tracer
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FIG. 5. Dynamical structure factor S(q,?) relaxation for
moderate/high plastic activity and long times (in the usual gt
diffusive regime). The lower-inset shows S(g, t) as a function of ¢>
for time windows up to t = 1000. The duration of plastic events
is T, = 1.5. The main plot and upper-inset rescale the curves
corresponding to time-windows ¢ > 20 (curves on the left of the
dark-orange one in the inset), plotting S(g,?) as a function of
g*t. A pure exponential behavior S(gq, t) o exp[—A(g*t)] is fitted.
T =0.16, (a) ~0.14, ¢, = 1.0, L = 32.

will be proportional to p(r) ~ r?~'dr in general dimension d.
Then, using probability conservation and u ~ r=@=1 (du ~
r=4dr),

P(u)du = P(r)dr o< r*~'dr oc u=®=D/E@=Dygy  (19)

Therefore, for large displacements we expect P(u) to decay as
P(u) ~ u=@4=D/@=D_ py)y ~u=>?ind = 3.

On the other hand, the statistics of small displacements will
be ruled by an incoherent superposition of small “kicks” given
by distant plastic events. In a given finite system (and with
periodic boundary conditions) one cannot be further than a
maximum distance controlled by the density of events, from
the closest plastic event. Then, it is more frequent to find
intermediate displacement values, since there are many more
tracers at intermediate distances from the plastic events than
far away. Indeed, one can prove that P(«) should go to zero
as u decreases as P(u) ~ u?~!. From just a pure incoherent
Brownian motion and the resulting Maxwellian distribution
for the displacements in a given time window, we are able
to derive such ~u¢~! behavior at small u for general d (see
Appendix D).

Finally, in the limit of very low temperatures, the small
displacements are not ruled by the incoherent superposition
of many small kicks, but instead by the displacements field
generated a very distant single (or few) plastic event(s). In this
case, we can expect P(u)~u at small u.

In Fig. 6(a) we show the displacement distribution P(u),
with u defined as the absolute displacement in a time win-
dow At = 0.1. These distributions have been obtained from
N; ~ 1.1 x 10° independent displacements of M particles in
the steady state. Let us first notice that the maximum of
P(u) moves to the right as the temperature increases. This is
consistent with a larger average displacement value for tracers
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FIG. 6. Displacement distribution P(u) for different tempera-
tures. The tracer displacement absolute values u are measured each
0.1 time units. Panel (a) shows P(u) for different temperatures 7 =
0.03, 0.035, 0.04, 0.05, 0.08, 0.16, and 0.27 in different colors and
symbols. The solid gray line correspond to the analytical expression
of Eq. (D1) for ¢ = 0.016. The inset of panel (b) shows the mean
displacement () vs mean activity (a). The dashed line is a power-law
~(a)?/3. Panel (b) shows rescaled curves P(u)(a)* vs u/{a)*>. Red
dashed line, purple dot-dashed line, and gray solid line show P(u) ~
u, P(u) ~ u?, and P(u) ~ u=>?, respectively. T, = 1.5, €y = 1.0,
L =32.

at larger and larger mean plastic activities. This is something
to be expected, since kicks coming from several neighbor-
ing events can add up to produce a larger displacement. We
observe in particular that (u) oc (a)*/? [Fig. 6(b), inset]. The
power-law cutoff at large u is eventually controlled by the
way the displacement field is computed on a lattice and the
time integration of the displacement set up a natural maximum
value. At each time step, the displacement field cannot be
higher than the one felt on a nearest-neighbor cell to an active
plastic event. That kick times the A¢ of the displacement
observation makes the maximum u, here ~0.1. Appendix D
explores the dependence of P(u) on At.

In Fig. 6(b) we use the (u) o< (a)*3 scaling to “align”
curves corresponding to different temperatures. In this scaled
plot, we can appreciate clearly the power-law decay of P(u)
for large displacements ~u~>/2, which extend to larger and
larger ranges as temperature is lowered. The power-law
behavior is disrupted at larger activities by the incoherent
superposition of different plastic event effect on displacement
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fields. In fact, one can prove that for very high activities,
where plastic events are basically uncorrelated and induce
an effective Brownian motion in tracer particles, the distri-
bution P(u) takes the form of a Maxwellian [see the gray
line in Fig. 6(a)]. The systematic little “peaks” or oscilla-
tions observed in the distributions tails can be attributed to a
discretization effect: integrating the tracer displacement over
a field defined at patches makes some values of u a priori
more probable to obtain that others The choice of a larger
time window to define u washes out those oscillations (see
Appendix D), so it would do a smoothing of the displacement
field (e.g., by interpolation).

B. Fully thermal system

Up to now we have only considered tracer particles that
follow displacement fields but that are themselves insensitive
to temperature. We now turn to the slightly more realistic case
in which we include thermal agitation in the tracer particles
equations of motion. For each tracer s we now update the
tracer positions according to

£ — & +u(E)dt + ny(, T)Vdt (20)

with u(€) being the instantaneous displacement field at site
&, computed from the plastic activity (15), and n;(¢,T) is a
Langevin thermal noise with zero mean value (1;(¢, T)); =
0 and §-correlated (n;(¢, T)ny (', T)) = 2T8( — i")é(t —t').
The motivation to include the last term in the tracers’ position
updates comes from the fact that in thermal amorphous solids
(metallic glasses and some colloidal glasses and gels [32,45]),
Brownian motion is relevant. It does not pretend to replace
the complete atomistic modeling of interacting particles in a
thermal bath, but add enough ingredients to sense the interplay
of plasticity and temperature in a relaxing glass. Also, it turns
into a closer model representation of the nanoparticles system
presented in [6].

Note that this approach will only remain valid for small
enough temperatures, such that the typical thermal displace-
ments remain much smaller than the linear size of the
thermally activated rearranging regions (cells of the EPM).
Assuming such low temperatures is anyhow more opportune
and realistic, since the compressed exponential relaxation is
only expected in this regime [25]. With respect to Sec. IV A
where only the ratio B/(kgT) was relevant (and B = 1 was
used), now the absolute value of T also matters. In the fol-
lowing, we work with smaller values of 7', but staying in a
comparable range of B/(kgT ) by decreasing B accordingly.

In particular, we start by varying the temperature in the
tracer’s equation of motion while fixing the elastoplastic
model mean activity. This “fixed (a) level” protocol would
better mimic the cases in which plastic activity is consid-
ered to be largely controlled by rearrangements originated
in prestress [22,25]. To do that, we fix the ratio B/(kgT)
in Eq. (13). For most of the section we will set (a) ~ 0.05,
which, for comparison, correspond to a temperature 7 >~ 0.1
when B =1, ¢, = 1.0, and 7., = 1.5.

1. Mean-square displacement at fixed activity

Figure 7 shows the mean-square displacement of tracers
at different temperatures and a fixed plastic activity at a low
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FIG. 7. Mean-square displacement (r?) for a fixed plastic activ-
ity. The main plot shows the mean-square displacement as a function
of time observation window for different temperatures, ranging from
T =2.0 x 1077 (light-green curve) to T = 6.3 x 10~* (light-purple
curve). The prefactor B in Eq. (13) has been varied for each temper-
ature such that (a)(B/kgT) >~ 0.05 is kept fixed. The gray full and
dashed lines are guidelines to show the ballistic (~¢?) and diffusive
(~t) behaviors, respectively. The inset shows a zoom-in to the short-
time regime (f < Tey). Tey = 20.0, €9 = 0.1, L = 32.

value (a) >~ 0.05. At low temperatures, we observe the same
crossover from a ballistic or persistent movement regime
((r*) ~ t?) to a diffusive regime ((r?) ~t) at t ~ 1, as re-
ported in Fig. 2. Notice that now we show the case of 7, for
a better display of the “short times” (f < 7,) regime. As we
increase the temperature, and thermal agitation becomes more
and more relevant, we can observe how the ballistic regime is
washed-out. While this is intuitive and somehow unsurprising,
it has not been addressed before (Ref. [19] worked only with
athermal tracers, and the mean-field approach of Pitard and
Bouchaud did not include a thermal noise either). Explicitly
modeling the interplay of plastic activity and temperature
on the tracer’s motion allows us to quantify the emergent
dynamics. For example, one can notice that at intermediate
temperatures in Fig. 7 the MSD shows an s shape. Indeed,
the ~¢2 behavior is killed starting from the shortest times and
therefore for some combinations of activity and temperature
one gets the following for the dynamical regimes as a function
of time window: diffusive, superdiffusive or even ballistic,
diffusive again. This would certainly have a consequence on
the characterization of the relaxation, since the dynamical
structure factor is expected to be affected accordingly.

2. Dynamical structure factor at fixed activity

Thermal agitation on the particle tracers interferes in their
persistent movement at short times and this also has conse-
quences on S(g, t). Figure 8 shows the dynamical structure
factor S(g, t) in the short-time regime for three different tem-
peratures (T = 2.0 x 1077, 9.0 x 107>, and 6.3 x 10™) at
fixed activity, i.e., corresponding to the two extremes and an
intermediate curve of Fig. 7. In the raw data of the insets,
one can appreciate that for a given time-window (same curve
color in the three panels) and same g, S(g,t) has relaxed
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FIG. 8. Dynamical structure factor S(q,t) relaxation at short
times and different temperatures but fixed activity. In all panels, the
insets shows S(g,t) as a function of ¢ for time windows up to
t = 70. The dark-red curve corresponds to the duration of plastic
events, Te, = 20, €9 = 0.1, L = 32. (a) The main plot collapses the
curves corresponding to time-windows ¢ < ., by plotting S(q, t)
as a function of ¢''t. The dashed line shows a compressed expo-
nential of (¢"'t) with B8 ~ 1.58. (b) The main plot collapses the
curves corresponding to time-windows ¢ < T, by plotting S(q, t) as
a function of ¢'t. The dashed line shows a compressed exponential
of (¢'3t) with B ~ 1.45. (c) The main plot collapses the curves
corresponding to all time-windows by plotting S(q, ¢) as a function
of ¢'"'t. The dashed line shows a compressed exponential of (¢'7t)
with 8 >~ 1.15.
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FIG. 9. Relaxation exponent « and $ at short times for different
temperatures but fixed activity. The upper-panel shows « vs 1/T and
the lower-panel displays 8 vs 1/T. The 1/T axis is displayed in log-
scale simply for a better visualization. The estimates correspond to
collapses and fits as those of Fig. 8. 7., = 20.0, ¢y = 0.1, L = 32.

more at higher temperatures. This is intuitive since thermal
agitation contributes to the decorrelation from the initial con-
figuration. Nevertheless, the interesting characteristics lies
in the functional form of the relaxation. For each tempera-
ture we seek structure factor behavior of the form S(g, t)
exp[—A(g®t)?]. In panels (a) and (b) we have collapsed curves
corresponding to time-windows up to the duration of the
plastic event (f < 7oy), While in (c) the good collapse with
a single o extends to times above t.,. We observe that both
a and B vary with temperature. The results for the lower
temperature here [panel (a)] are consistent with the athermal
case presented in Fig. 3. As temperature increases, « increases
from ~1.1 to ~1.7 while 8 decreases from ~1.58 to ~1.15.

This goes in the direction of a crossover between a persis-
tent movement regime and a diffusive regime, as postulated in
Fig. 7. Indeed, if we take the mean-field exponents [18] as a
guide, we may expect {«, 8} moving from {1, 3/2} to {2, 1}
as the temperature increases and the tracers at short times go
from ballistic to diffusive. Yet, all exponents estimated from
data are effective and not exactly matching the mean-field
ones. One can argue that this is caused on the one hand by
the crossover between dynamical regimes at ¢ ~ T, itself,
but more importantly, by the fact that the system is in finite
dimensions, and nontrivial correlations among plastic events
are expected to play a role.

Figure 9 shows the evolution of @ and § with temperature.
The exponents have been measured for several temperatures
from collapses and fits such as the ones in Fig. 8. The
error bars are estimated from independent fit approaches
and then doubled. Let us notice first in the bottom panel
how B increases from ~1.1 to ~1.6 as the temperature
is lowered. These results can be compared with the recent
reports in ZrysgTig2CuysNijgBey;s metallic glass (T, >~
596 K) presented in Ref. [21], where 8 decreases with in-
creasing temperature smoothly from 1.75 +0.14 at 523 K
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FIG. 10. Displacement distribution P(u) for different mean ac-
tivities with and without thermal agitation (TA). Green curves relate
to an activity (a) ~ 0.000 17: while open symbols repeat the data for
T = 0.035 in Fig. 6, closed symbols correspond to T ~ 8 x 1077 (B
changes to maintain activity) and thermal agitation proportional to
T has been included in the tracers. Orange curves relate to (a) ~
0.0023 (T =0.05 in Fig. 6), and the thermal agitation included
in this case is 7 ~ 8 x 107>, Red dashed-line and gray dashed-
point line show P(u) ~ u? and P(u) ~ u~>/?, respectively. The tracer
displacement absolute values u are measured each 0.1 time units.
Ty = 1.5,¢9 = 1.0, L = 32.

to 0.67 £0.07 at 618 K. A stretched exponent 8 < 1 indi-
cates that the sample has reached the supercooled liquid state
(inaccessible in our model). Earlier [11], the shape factor 8
was studied for MggsCupsYio (T, 2 405 K), showing that
it remained in the range 1.7-1.4 before plunging when ap-
proaching Tg. Our results for the temperature dependence of 8
are also consistent with what has been reported in simulations
of network-forming gels [25]. Accompanying the gradual
change of B with temperature, the exponent «, that defines
how the characteristic relaxation time depends on the wave
vector, decreases with decreasing temperature, from ~1.7
(diffusivelike) to ~1.1 (ballisticlike). In other words, for a
fixed g the characteristic relaxation time t ~ ¢~* decreases
with increasing temperature. Again, this is in agreement with
[11,21,25].

We therefore propose that the shape exponent variation
with temperature in the measured relaxation of amorphous
solids can be understood by the competition of rather persis-
tent displacements on its essential constituents, induced by the
occurrence of plastic events nearby, on the one hand, and the
intrinsic thermal agitation at which they are subject that tends
to generate a Brownian motion of particles.

3. Displacements distributions with thermal agitation

To complete the picture of what happens when we include
thermal agitation in the tracer particles, we present here the
displacement distributions P(u) for a couple of temperatures
with the addition of thermal agitation on the tracer movement.
Figure 10 shows P(u) for a couple of different temperatures to
see the thermal agitation effect on the displacements. Green
solid points correspond to a relatively low temperature of
T ~8x 1077 (and B = 2.3 x 107 is equally low such that

(a) ~ 0.000 17). We can see that, although the large u tail of
P(u) is still dominated by the plastic activity induced displace-
ments, the thermal agitation or Brownian motion of the tracers
starts to dominate the small displacements, clearly shifting
the P(u) peak position (comparison is done with the {T' =
0.035, B = 1} curve of Fig. 6). For the orange solid points
T ~ 8 x 107 is already large enough to completely erase the
hallmark of the displacements of mechanical origin (compar-
ison is done with the {T' = 0.05, B = 1} curve of Fig. 6). The
P(u) ~ u~>? behavior at large u completely disappears, while
the P(u) ~ u? scaling at small  still shows, but now directly
generated by a genuine Brownian motion instead of being a
result of an incoherent superposition of displacements with
mechanical origin (see Appendix D). The disappearance of
the P(u) ~ u=>/? tail at large enough temperatures justifies
a diffusive regime S(g,t) ~ exp[—Ag°t] stepping in sooner
than in the pure plastic activity case, as we verify.

C. Reactivation times and dynamical heterogeneity

So far we have concentrated on quantities that are com-
puted from the tracer particle movements. We now focus on
the evolution of the elastoplastic system itself and jump to the
analysis of the intermittent and heterogeneous dynamics ob-
served in a quiescent amorphous solid. System patches locally
yield, either activated by temperature or over-stressed by the
action of other sites; then they recover elasticity (on average)
after a time 7.,. The time it takes to see two consecutive
activations of a given site will depend somehow trivially on
the global activity level, but each occurrence can be difficult to
predict. In fact, this quantity—that we call “reactivation-time”
Tro—1is broadly distributed, in particular at low temperatures.

In Fig. 11 we show W(t,.) for different temperatures. Be-
yond short .., one sees a power-law distribution W(7.e) ~
7", with @ >~ 3 /4, followed by an exponential upper cutoff.
Interestingly, the cutoff depends on temperature and moves
to larger and larger reactivation times as 7 is decreased. For
our lowest temperatures, W(7,e) expands over almost seven
orders of magnitude. As expected, 7, seems be proportional
to an activation rate that scales as the inverse of activity
(a)~', and we can use that to collapse the distribution tails
in Fig. 11 (bottom). We find that an exponent close to but not
exactly unity makes the best collapse, happening when we plot
W(1pe)/(a) "7 versus 1. (a)!"7, preserving the normalization
of the distributions rather than the power-law exponent. As
already discussed in [19], the interaction among plastic events
causes the emergence of a characteristic short reactivation
time of the order of t.,, presumably due to neighbor sites
alternately triggering each other during a burst of activity.
That is the little peak observed in all curves, that looks sharper
at low temperatures. At the same time, correlations among
sites induce a fat-tailed distribution of reactivation times, that
are increasing as T decreases, which otherwise would decay
exponentially in a Poissonian way. At low temperatures, the
intermittency of the plastic events at a given site is deter-
mined by events happening in other regions of the system;
it is intrinsically a spatial property. Furthermore, notice that
the exponent w controlling the power-law regime depends on
dimension: It was w >~ 2/3 ind = 2 and it is now w ~ 3/4 in
d = 3. Although one can be tempted to think onad/(d + 1)
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FIG. 11. Distribution of reactivation times W(t..) for different
temperatures. 7., are the time lapses between consecutive occur-
rences of a plastic event in the same system patch. Upper-panel
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dashed line displays a power-law ~7_“, with the exponent w = 3/4.
Lower-panel rescales the curves plotting (.. )/{a)""7 vs oc {a)'?.

B=10,1, =15, =1.0,L =32,

dependence, we do not have an argument for this observation.
Intermittency was argued as a possible explanation of the
shape exponent g-dependence [5]. While we do not address
that problem in the present work, it is worth mentioning that
in EP models the activation times of a block are a direct ob-
servable. So this is advantageous for studies of intermittency
of plastic activity.

One is tempted to relate this broad distribution of reacti-
vation times to dynamical heterogeneities. In fact, dynamical
heterogeneities have been recently discussed in thermal
EPMs. In [36], it is argued that the patterns formed by the local
persistence at different temperatures show that the dynamics is
spatially heterogeneous over lengths that increase when low-
ering the temperature. Nevertheless, at least in our case, it can
be seen clearly that such heterogeneity in space is only mo-
mentary and does not persist when the dynamics is integrated
in time. In other words, one does not find the paradigmatic
dynamical heterogeneity of glasses where, for example, as in
spin glasses, persisting fast and slow regions can be identified
[50-52]. In the absence of anisotropic fields or disorder in
the local activation dynamics, such as a quenched disorder
or a dynamical disorder creating diverging correlation times,
the system is intrinsically homogeneous and we observe such
homogeneity in the time averages of t... In Fig. 12 we take
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FIG. 12. Distribution of mean reactivation times W((t..)) for
different temperatures. (7..) are the average time lapses between con-
secutive occurrences of a plastic event in each block of the system.
Averages are taken over 107 local measurements of 7., very well sep-
arated in time (noncorrelated), and the histogram is computed with
the statistics of 2'° blocks. B = 1.0, 7, = 1.5, ¢y = 1.0, L = 32.

the average reactivation time on each block during a long
run, with care to average over uncorrelated samples, this is,
taking well separated configurations in time, and we plot its
distribution using our 2'3 blocks as a representative statistics.
It is interesting to see that the mean value (7.¢) is well peaked
around a typical value that depends on temperature (activity).
The moving peak/bump at large () is simply a signature of
blocks needing to wait more and more to get reactivated as 7
decreases.

V. DISCUSSION

We have used a three-dimensional thermal elastoplastic
model with the addition of probe particles to follow the
displacement fields and analyze the equilibrium structural re-
laxation dynamics of quiescent amorphous materials at finite
temperatures. The results show that for sufficiently short times
and when the plastic activity is relevant, there is always a
super-diffusive regime in the mean-square displacement of the
probe particles, after which they enter a crossover towards a
diffusive behavior. The crossover is dominated by the typical
duration of plastic events in agreement with the interpretation
that the close to linear motion of the particles in the superdif-
fusive part is an elasticity-mediated phenomenon.

In addition, we observed a compressed exponential relax-
ation (with a shape exponent 8 reminiscent of experimental
results) in the dynamical structure factor S(q, t) at short times,
associated with the elasticity-mediated superdiffusive regime,
that exists even in the equilibrium dynamics of this model. For
a sustained plastic activity level, the 8 > 1 exponent varies
with temperature, decreasing as the thermal agitation of the
particles becomes more and more relevant, eventually turning
the compressed- into a simple-exponential (8 ~ 1).

At long times, in the diffusive regime, the relaxation is
always exponential. Furthermore, we observe the crossover
from a (¢*/?t) to a (¢%t) diffusive relaxation when activity
increases, as predicted by mean-field arguments [16,17]. The
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displacements distribution P(u) helps to interpret the behavior
of S(gq, t), with the characteristic P(u) ~ u~>/? decay of large
displacements (also expected from mean-field arguments) dis-
appearing as the mean activity increases.

We noticed that our approach does not reproduce in any
regime the characteristic stretched exponential relaxation of
glasses [53]. Reproducing the commonly observed stretched
exponential relaxations at long times seems not possible
without further complexification of the EP model under
consideration. A common belief is that stretched exponen-
tials are created by the superposition of a large distribution
of relaxation times in the glassy heterogeneous dynamics
[54]. In our thermal elastoplastic model, we show indeed
a feature of dynamical heterogeneity (similar to [36]): a
very wide distribution of activation “waiting” times is ob-
served instantaneously. Yet, the system remains homogeneous
in the time-integrated dynamics, and stretched relaxation
never happens. Without a quenched disorder or other kind
of imposed persistent heterogeneity, we do not believe that
stretched exponentials can be reproduced in elastoplastic
models.

Still, other avenues to explore modifications of elastoplas-
tic models towards the characterization of glasses are possible.
Recent studies have shown that stretched exponential behavior
in glasses could be observed already on a local scale
relevant to the localized relaxation events [55], and stretched
exponentials can thus be obtained independently of a broad
distribution of relaxation times. Also, stretched exponential
relaxation can be obtained by appropriately tweaking the
dynamics of local relaxation events and weighting their
interactions, at least in a mean-field approach [27]. We can en-
vision that modifications on how local stress relaxation occurs
in plastic events in elastoplastic models, e.g., abandoning the
simplistic instantaneous, simple exponential, or linear options
explored so far, might also allow for a stretched relaxation
regime to arise in the dynamics, irrespective of the system
homogeneity. Furthermore, EP models could also serve as
a numerical tool to compare with recent under-pressure
relaxation measurements in BMGs [56], through an
easy modification of the model implementation and
parameters.

Finally, we expect that our analysis of the interplay
between plastic activity induced displacements and simple ag-
itation due to finite temperature would inspire ongoing experi-
ments on systems whose elementary constituents and are sen-
sitive to Brownian motion to try to discriminate both contribu-
tions in the autocorrelation functions of the scattered intensity,
for example by independently assessing the “mean plastic
activity” during the experiment as temperature is varied.
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FIG. 13. Stress distribution for different temperatures in the sta-
tionary state. Parameters: B = 1 and T ranging from 0.03 to 0.27 as
indicated in the legends, with respective mean activities (a) >~ 4.5 x
1075, 1.7 x 1074, 5 x 1074, 2.3 x 1073, 0.023, 0.14, 0.3. 7, = 1.5,
€ =1.0,L =32.

APPENDIX A: STEADY-STATE STRESS DISTRIBUTION

This Appendix shows the stationary distribution of stresses
in our elastoplastic model at different temperatures or activi-
ties. In the way the model is defined, it only makes physical
sense if the plastic activity is “low enough.” High activ-
ity levels induce a notable fraction of the blocks to remain
overstressed and “out of the box” [—oy, oy]. That should be
avoided if we want to make sense of the results. Therefore,
our control observable has been the distribution of stress at
each given temperature or mean activity.

Figure 13 shows the normalized stress histograms P(o)
corresponding to the steady states used to produce Fig. 2.
As plastic activity increases, the stress distributions become
wider and wider. The local yield stresses, being set to o, =
41, cause the distribution to show a pseudo discontinuity as
the stress o goes out of the box. Let us recall then for these
steady states, the prefactor of the Arrhenius term was sim-
plyB=1and T = 0.03,...,0.27 induced mean activities of
(@) ~4.5%x107°,...,0.3.

Moving to the analysis of the interplay between plastic
activity and thermal agitation, we have fixed a plastic activity
to (a) >~ 0.05 varying accordingly B and 7. Figure 14 shows
the distributions P(o) for the steady states of such cases. As
one expects, the stress distribution only depends on the mean
activity, and all curves coincide.

APPENDIX B: ANALYSIS OF DISTRIBUTED LOCAL
YIELDING THRESHOLDS

Although the stochastic nature of thermally activated plas-
tic events already washes-out any undesired effect of a
uniform and constant threshold, we have run a sanity check
and simulated also distributed thresholds.

Figure 15 shows the MSD and S(q, t) for a system where
the (positive) local thresholds are initially set randomly from a
distribution P(oy) ~ #ﬁ exp[—%("g' )], where o,, is the
width of the distributi(;n, and after each local yielding event
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FIG. 14. Stress distribution for different temperatures in the sta-
tionary state. Parameters B and 7' as shown in the legends, preserving
a mean activity (a) >~ 0.05. 7o, = 20, ¢, = 0.1, L = 32.

the threshold is renewed drawing a new value from the same
distribution. The possibility of yielding the negative threshold
is taken into account symmetrically as for the uniform case.

As expected, we notice that the implementation of dis-
tributed stress thresholds does not modify our main findings,
and both the MSD crossover from ballisticlike to diffusive and
the compressed exponential shape of S(g, ¢) at short times re-
main basically equal to the uniform stress threshold case. We
have also checked that a uniform distribution around oy = 1
and different distribution widths do not change the result. We
hope that this test helps to simplify the exploration of which
of the many details in EPMs matter for these phenomena, and
which details do not.

APPENDIX C: MEAN PLASTIC ACTIVITY (a) VERSUS
TEMPERATURE

The mean plastic activity (a) is directly controlled by the
temperature 7 and the parameter B through Eq. (13), but it
also depends on the effect that a plastic event has on other
sites, which is modulated by €y, and in the plastic events
duration t.,. In this Appendix, we show activity as a function
of temperature for the case corresponding to the steady states
of {B=1, ey = 1.5, ¢¢ = 1.0} and {B = 0.001, 7., = 20,
€0 =0.1}.

Figure 16 (upper panel) shows the mean activity (a) as
a function of 1/T for the same steady states as in Fig. 2
(plus some extra temperatures). The behavior of the activity is
exponential in 1/7, as expected. The inset, plotted in log-lin,
shows (a) versus T. We can appreciate that for T — 0 the
activity decays fast, while, on the other hand, it saturates at
large temperatures. The lower panel shows (a) versus 1/T
(main panel) and 7T (inset) for the same steady states as in
Fig. 19.

APPENDIX D: DISPLACEMENT DISTRIBUTION P(u):
DIFFERENT ACQUIRING TIME AND BROWNIAN
MOTION ROLE

This Appendix intends to help in the interpretation of the
results for the displacements distribution P(u#). On the one
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FIG. 15. Mean-square displacement (r?) and dynamical struc-
ture factor S(q, t) relaxation for a system with the same parameters as
in Fig. 3, but with local yielding thresholds distributed in a Gaussian
fashion of width ~0.05 around o = 1. While the MSD curve
spans over four orders of magnitude in time, displaying both the
ballisticlike and diffusive regimes, the S(q, t) plot focus only in the
short times.

hand, the definition of u itself depends on a time window
observation. u is defined as the displacement of a tracer in
a given time Af. Changing Ar changes u and therefore also
P(u). On the other hand, it is important to understand the limit
cases.

1. Displacement distribution for different definitions of u

Figure 17 shows displacement distributions P(u) for differ-
ent definitions of the displacements u at low plastic activity.
In particular, we define u as the tracer displacement in a
time windows At. We show data for four different definitions
At = 0.1, 1.0, 10.0, and 100.0. Notice that At = 0.1 is the
case used in Figs. 6 and 10. A favorable consequence of
increasing At is that the noisy peaks of the P(u) tail at large
u smooth out. On the other hand, the distribution shrinks, the
ranges of u where power laws could be fitted become thinner,
and we may even lose some information about very small
displacements. Still, even the largest At shows clearly the
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FIG. 16. Main plots: Mean plastic activity (a) vs 1/T in the
stationary state Insets: (a) vs T. Upper panel: B =1, 7., = 1.5, ¢p =
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power-law tail at large displacements ~u >/ and ~u? for the

smallest displacements observed within that definition.

2. Displacement distribution of purely Brownian particles

The cases in which the movement of the tracer par-
ticles occurs only as a result of the thermal agitation
(Brownian motion) display random trajectories. In that case,
each displacement component (u, u,, u;) would popu-
late a Gaussian distribution function. Therefore, the module
of the displacement u = (u2 + u? + u?)"/? must follow a
Maxwell-Boltzmann distribution,

P 2 u? u?
=J=-=exp|—55 |
" w3 P 2c?

where c is a scale parameter. Figure 18 shows a test simu-
lation result for P(u) for tracer particles that undergo only
thermal agitation. As expected, a good accuracy with respect
to Eq. (D1) is seen.

When, either because of high plastic activity or because of
high thermal agitation, the tracer’s movement is random-walk-
like, we expect to observe a P(u) following Eq. (D1), at least

(D1
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FIG. 17. Displacement distribution P(u) where u is defined as
a tracers displacement time window At (different values of At in-
dicated in the legends). Parameters: T = 0.03, 7, = 1.5, ¢ = 1.0,
L = 32. Red-dashed, gray point-dashed, and gray full-line show
P(u) ~ u, ~u?, and ~u=>/2, respectively.

in the displacement u range where the movement is effectively
Brownian.

APPENDIX E: FULLY THERMAL SYSTEM:
VARIABLE ACTIVITY

The idea of a mean plastic activity that is insensitive
to the external temperature is justified in cases where pre-
stresses play a major role (e.g., in “as-quenched” glasses).
Nevertheless, one cannot rule out the case in which the same
temperature is controlling the thermal agitation of particles
and the plastic activity.

In this work, we have considered a thermal agitation
for tracers implemented as a Brownian dynamics (fully
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FIG. 18. Distribution of (the absolute value of) tracers displace-
ments per unit time. The red squares correspond to a simulation of a
pure Brownian motion, made with parameters 7 = 8.0 x 1077, L =
32. u is defined as the displacement in Ar = 0.1 units of time. The
blue dashed line corresponds to the Maxwell-Boltzmann distribution
[Eq. (D1)] with scale parameter ¢ = 4.0 x 107%.
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FIG. 19. Mean-square displacement (r?) for a varying temper-
ature and plastic activity. The main plot shows the mean-square
displacement normalized by temperature as a function of time obser-
vation window for different temperatures, ranging from 7 = 6.0 x
107 (light-green curve) to T = 2.4 x 10~° (dark-blue curve). The
prefactor B in Eq. (13) is fixed at B = 0.001. The gray dashed-lines
are guidelines to show the (~t) behavior. The inset shows (r?) un-
scaled. 1., = 20.0, ¢ = 0.1, L = 32.

overdamped). Perhaps a more realistic approach would have
been to use a Langevin dynamics (not necessarily fully over-
damped). The control of the drag term might allow us then to
somehow decouple the “thermal agitation” temperature from
the temperature parameter in the EP model. Although we have
not explicitly used a new parameter for the drag term of the
Brownian dynamics, the thermal agitation of the tracers and
the temperature are relativized by the parameter “B” in the
Arrhenius activation.

1. Mean-square displacement varying activity

In Fig. 19 we show the mean-square displacement for
different temperatures, where each temperature controls both
the thermal agitation of the tracer particles and the proba-
bility of plastic events by thermal activation [we have used
now a fixed B =1 x 1073 in Eq. (13)]. Now the influence
of both sources of tracer particles agitation—plastic activity
and temperature—is evidenced. In fact, one can better distin-
guish the crossover between two diffusive regimes previously
insinuated in Fig. 7. At very low temperatures, plastic activity
is almost absent or very spread, and (r?) at short times be-
comes essentially dominated by the thermal agitation alone:
particles diffuse with a diffusion coefficient D o< T (which
is shown in the collapse of (r?)/T curves at short times)
[57]. At higher temperatures, plastic activity becomes more
and more important and eventually dominates the diffusion at
large enough time windows. As a matter of fact, a (r?)/(a)
scaling collapses the curves of higher temperatures at long
times (not shown). In between the two diffusive regimes, we
can notice a superdiffusive crossover. And even though it is
not easy to identify a ballistic regime, that superdiffusivity
will already influence the relaxation shape exponents o and
B. Finally, the crossover between the activity-dominated to
the temperature-dominated diffusive regimes as we lower the

L (a) ]
0k T=06x10" ]
‘ 1.9 1.05
L ~exp[-0.000029(q" 0" ] ]
2

0.6 q —
L 107 107 10° 10’ ]

oo | (00

S@q.0)

0.4

0.2

00 ! Lol ! Loyl L Lo
10 10’ 10* 10

1.0 T

I A

T=1.0x10" ]

0.8F ~exp[-0.000058(¢"**n"*]
2

0.6/ 10~

S(q.0)

0.4

0.2

TITTTT[TTTTI 7T

OO 1l Lol Lol SRR R T

10 10" 10° 10 10
1.32t

1.0 I L | T

0.8

0.6/ =rermm—rrrm T |

S(q.0)

04

0.2

0.0l 1l !
10 10' 107 10°

12
q t

FIG. 20. Dynamical structure factor S(q, t) relaxation at short
times and varying temperatures and activities. In all panels, the insets
show S(q, t) as a function of ¢* for time windows up to t = 100. The
dark-red curve corresponds to duration of plastic events, t., = 20,
€ =0.1,L =32.

temperature is understood by recalling that plastic activity
decays much faster than temperature [(a) ~ exp(—1/T)].
2. Dynamical structure factor varying activity

Concerning the dynamical structure factor, as shown in
Fig. 20, we now can see at short/intermediate times a
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compressed exponential behavior that turns to pure exponen-
tial as we decrease temperature. At contrast with the case in
which the activity level is granted on nonthermal grounds,
here the temperature decrease simply suppresses the plastic
activity very fast and the few remaining persistent displace-
ments of tracers easily disappear in a weak thermal agitation.

In contrast with what is observed in Fig. 9, now the de-
crease in temperature implies an increase in « towards o >~ 2,
and, consistently, 8 approaches 1 as we lower T. Even with a
much weaker diffusive coefficient and therefore producing a
much modest displacement and limited structure factor decay,

for the lower temperature we obtain a nearly pure diffusive
regime at short times [Fig. 20(a)]: S(q,t) exp[—A(qzt)].
One might say that at such low temperatures, the tracers
remain near their initial position doing a small local Brownian
motion. They will eventually diffuse further away, but in our
observation time window here, for the lowest temperatures
they have barely traveled a distance comparable to the lattice
cell. On the other hand, the compressed exponential is granted
in the regime in which plastic activity dominates the relax-
ation. For the highest temperature [Fig. 20(c)] the structure
factor decays as S(g, t) o< exp[—A(g'?t)!].
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