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Unified description: equivalent description of elastoplastic 
models and elastic manifolds on disordered media.

Unified problems: interpretation of yielding as an effective 
“one-particle” problem and its shared features with fully-
connected mean-field depinning.

Unifying frameworks of depinning and yielding: models, 

flowcurves and effective noise



  

Depinning

e.g., the Quenched-Edwards-Wilkinson elastic line:

velocity-force characteristics

external forcepinning forceelastic interaction thermal noise

When long-range elasticity:

● Critical exponents depend on α and d

EEF et al. C. R. Physique 14, 641 (2013)

disorder potential

● For fully-coupled (α≤0), β also depends 
on the type of disorder (if it’s 
“continuously differentiable” or not).

D. Fisher Phys. Reports (1998)

M. Kardar Phys. Reports (1998)



  

Amorphous materials

A. Nicolas et al. Rev. Mod. Phys. (2018)

Yielding

Local rearrangements + Medium elastic response2015)

stress change (2D emulsion) 
Desmond&Weeks PRL 2015

Nicolas et. al EPJE (2014)

plastic event or 
shear transformation

J.D. Eshelby Proc.Roy.Soc. A (1957)

Eshelby’s propagator for the 

stress redistribution



  

Coarse-grained Elasto-Plastic Models (EPM) 

Fig. credit: Bocquet et al. PRL 103, 036001 (2009)

+ Dynamical rules for the local “state” n
i

Eshelby propagator

n=0 n=1 n=0

“mechanical noise” due to 
plastic activity elsewhere

global loading
imposed strain rate

exponential stress 
decay when fludized



  

Yielding model++: manifold on disordered potential

applied stress

Assuming (overdamped dynamics), that e
1
 and e

2
 relax much faster than e≡e

3

“Eshelby” interaction pinning force

“Elastic manifold” e(r) (with long-range interactions)

+ Saint-Venant constraints
X. Cao et al, Soft Matt.(2018)

Starting w/ a tensorial description

Allowing for plasticity:

(n=0) (n=1)

more “EP-like” more typical

E.A. Jagla, PRE (2007)&(2020), C. Liu et al. JCP (2022)



  

Yielding model++: manifold on disordered potential

E.A. Jagla, PRE (2007)&(2020), C. Liu et al. JCP (2022)

applied stress

Assuming (overdamped dynamics), that e
1
 and e

2
 relax much faster than e≡e

3

“Eshelby” interaction pinning force

“Elastic manifold” e(r) (with long-range interactions)

+ Saint-Venant constraints
X. Cao et al, Soft Matt.(2018)

Starting w/ a tensorial description

Allowing for plasticity:

Each site w/ independent disordered potential

Lin et al. PNAS ‘14

By construction: no “states n
i
”, no memory!

Dynamics can be derived from a Hamiltonian 

and be a Markovian process 

Disordered potential can be quenched or 

change dynamically after each basin jump



  

“Hamiltonian” model for yielding

Eshelby propagator

applied 
stress

Langevin noise“Eshelby” interaction

Evolution of the local strain e(r,t) on a mesh

Pinning force

concatenation of parabolic or sinusoidal pieces

Measured 

strain-rate

V
i
 are disordered potentials, uncorrelated 

in space. We consider two different forms:

“cuspy” “smooth”

External driving     tilts the potential, temperature 

helps to jump barriers

Each local jump to a new well is a plastic event



  

FLOWCURVES
Herschel-Bulkley law



  

Flowcurves in the “Hamiltonian” model

concatenation of parabolic or sinusoidal pieces

Measured strain-rate

Consider two different disorder forms:

External driving σ tilts the potentials

Each jump to a new well is a local “plastic event”

“cuspy” “smooth”



  
I Fernández Aguirre, EA Jagla PRE 98, 013002 (2018)

“cuspy” “smooth” Cuspy Smooth

Flowcurves in the “Hamiltonian” model
Two relevant values for “beta”



  

Elasto-Plastic Models (EPM) with stress-dependent rates

Picard’s model

Lin’s model

Nicolas’ model

n=0 n=1 n=0

n=0
(n=1)

n=0

EEF & EA Jagla Soft Matter 15, 9041 (2019)

Uniform rate

(all classic cases)

Stochastic rules for local yielding:

Rationale for the analogy with explicit disorder landscape

Progressive rate

site is more likely to yield 
as it is more overloaded(our proposal)

cuspy potential

smooth potential

when at a rate



  

Flowcurves (β exponent)

uniform

progressive

Uniform rate Progressive rate

a
rb

it
ra

ry
 s

h
if
t

arbitrary shift

β depends on the local yielding rule only!

EEF & EA Jagla Soft Matter 15, 9041 (2019)

d=2 T=0

We simulate (3x2=)6 different EPMs in d=2

Cuspy Smooth

(recall) In the Hamiltonian model:



  

Flowcurve’s β exponent and disorder type

A.B. Kolton and E.A. Jagla, PRE 98, 042111 (2018)
D.S. Fisher, Phys. Rev.p 301, 113 (1998)

In fully-coupled depinning two different β coexist

Depinning of the elastic manifold

Uniform rate or
cuspy potential

Progressive rate or 
smooth potential

Yielding in d=2

Summary

Notice that Eshelby is 

When long-range:

A difference of 0.5 in exponents between 
cuspy and smooth persists



  

1st observation:

The flowcurve exponent β of yielding in 2D 
depends on the type of disorder (or yielding rule), 
just as in fully-connected depinning



  

THERMAL 
ROUNDING

EEF, AB Kolton & EA Jagla, Phys. Rev. Materials 5, 115602 (2021)



  

Depinning

*[D.S. Fisher PRB 31, 1396 (1985)]

In mean-field depinning*

Thermal rounding scaling

so

and

In the limit T→0 we expect

Right at f=f
c
 :

is the thermal rounding exp.

describes how energy barriers vanish 
as we increase the stress

for cuspy 
potentials

for smooth 
potentials

following the analogy with a ferromagnetic transition

Yielding
Better seen in log-lin...

stress depletion



  

Thermal rounding: Hamiltonian model

“cuspy” “smooth”

The thermal 

rounding scaling 

works nicely around 

σ=σ
c
 in both cases

(Temperatures to be 

compared with the 

reference energy ~1, 

typical height of local 

barriers)

EEF, AB Kolton & EA Jagla 
Phys. Rev. Materials 5, 115602 (2021)

Langevin noise



  

EP models with thermal activation

Thermal model rules

The e.o.m. remains identical

We restrict ourselves to the case of uniform rates 

T>0

α plugged-in as a new parameter of the model

We add the chance to locally fluidize by thermal activation while the stress is still below 
the threshold

(progressive rate + activation is tricky)



  

Thermal rounding: EP models T>0d=2

Uniform rates

EEF, AB Kolton & EA Jagla 
Phys. Rev. Materials 5, 115602 (2021)

Here α is a parameter, decoupled from β, but the 

scaling works well as soon as we use                  

does notworks now



  

Thermal rounding scaling for the yielding transition

● The thermal rounding scaling works 

with no corrections for yielding in 

finite dimensions!

Summary

● This is NOT the case* for usual 
depinning (short-range interactions)

➔ Numerical determination of ψ varies 

widely among different models
➔ Universality questioned
➔ Strong logarithmic corrections

Two relevant families of linked exponents

(d=2)

Then

“cuspy” “smooth”

Bustingorry et al. EPL 81, 26005 (2007), Physica B: 
Condensed Matter 404, 444 (2009), PRE 85, 021144 (2012).

*Several works:
Kolton&Jagla, PRE 102, 052120 (2020) EEF, AB Kolton & EA Jagla 

Phys. Rev. Materials 5, 115602 (2021)

See also: M. Popović et al. PRE 104, 025010 (2021)



  

2nd observation:

Standard “à la Fisher” thermal rounding 
scaling works just perfectly for yielding in 2D, 
just as in fully-connected depinning



  

(



  

Yielding transition at finite temperatures

Is temperature relevant here?

 Rev. Mod. Phys. 90, 045006 (2018)

Thermal effects (beyond intrinsic) 

could be relevant when elementary 

constituents<1μmm

In general not but...

Empirically showed that the yield-strength [τ
CT

] (stress at 

yielding) is a systematic function of T/Tg, in more than 30 

different metallic glasses.
Strong universality!

(~ 1k citations)

“Figure shows that τ
CT

 [the 

yield-stress] is a systematic 
function of t=T/Tg”



  

Which can be matched with the J&S expression 
(up to non-leading terms) if α=3/2

...we can invert to obtain

If

and, at least for σ<<σ
c
 , we ask

to reflect the thermal activation over barriers

that scale as

(see also [Dasgupta et al. PRB 87, 020101 (2013)])

Hamiltonian model, 
smooth potential EEF, AB Kolton & EA Jagla 

Phys. Rev. Materials 5, 115602 (2021)

“J&S’s law” for general α



  

)



  

(FULLY-COUPLED) 
MEAN-FIELD 

DEPINNING &
YIELDING

EEF & EA Jagla, PRL 123, 218002 (2019)



  

Combined FC-MF-depinning and yielding problems

EEF & EA Jagla, PRL 123, 218002 (2019)

(in Fourier space)Depinning & yielding common e.o.m.

We propose a linear combination of both kernels

and switch among them with a parameter ε mean-field depinning (ε=1)) and yielding (ε=0))

In both cases

(propagator range is the same, angular dependence changes)

(Fully-connected) mean-field depinning Yielding in d=2

Similarly in yielding d=3



  

Smoothly from mean-field depinning to 2D yielding

EEF & EA Jagla, PRL 123, 218002 (2019)

mean-field depinning (ε=1)) and yielding (ε=0))

For cuspy disorder potential For smooth disorder potential

Smooth change of exponents!

Variation between

Why is this surprising? If we combine different criticalities, mixing two kernels with different 
ranges, the system will ultimately display the critical exponents corresponding to the 
longest range interactions. Here, instead, FC-MFD and yielding perfectly coexist.

Flowcurves



  

EEF & EA Jagla, PRL 123, 218002 (2019)

Message: both problems are contained in a general one

Avalanches and x
min

 scaling

(quasistatic protocol)

 “distance” to local instability

Smoothly from mean-field depinning to 2D yielding



  

3rd observation:

Eshelby’s propagator is ~q0, just as fully-connected 
mean-field depinning.

Smooth variation of exponents when switching 
between MF depinning and 2D yielding propagators. 



  

Proposal:

Yielding in finite dimensions should support a mean-
field or “one particle” description



  

Proposal:

Yielding in finite dimensions should support a mean-
field or “one particle” description.

➔ Plug-in the effective noise in a one particle model 
and recover the flowcurves.



  

EFFECTIVE 
NOISE &

ONE PARTICLE 
DESCRIPTION

EEF & EA Jagla Soft Matter 15, 9041 (2019)

EEF, AB Kolton & EA Jagla Phys. Rev. Materials 5, 115602 (2021)



  

Mechanical noise measured at a generic point

P
ic

a
rd

’s
L

in
’s

N
ic

o
la

s
’

Accumulated noise at a point

What if we wanted to describe our dynamics with an effective mean-field ?

(during an avalanche)

In the quasistatic limit:

Assuming the noise signal has a Hurst exponent H 

Run a DFA (De-trended Fluctuation Analysis):

We do statistics of the observed heights δ of 
boxes of length ε along the noise signal 
(suppressing a global trend)

noise

d=2

T=0



  

[Lin&Wyart, PRE 97, 012603 (2018)]

Instead of coming from single-site kicks, 
the noise is produced by avalanches

?

A Random Walk has H=0.5

is found for 6 different EP models

A noise generated by single Eshelby’s has H=1

...via DFA

Mechanical noise Hurst exponent d=2 T=0



  

Stochastic “Prandtl-Tomlinson” model

One particle in a quenched potential V(x) with stochastic driving

The stress is estimated as

ω=1 for cuspy potential, ω=2 for smooth potential

At T=0

ω is the behavior of the pinning force around 
the transition points

In other words,

“analytically” can be found

EEF, AB Kolton & EA Jagla Phys. Rev. Materials 5, 115602 (2021)

At T>0

Which can be worked into the more standard form

with

 and thermal noise



  

Thermal rounding: “one-particle” PT model

EEF, AB Kolton & EA Jagla, Phys. Rev. Materials 5, 115602 (2021)

“cuspy” “smooth”



  

● Equivalence can be built between elasto-plastic models and 
manifolds on quenched disorder approaches. 

● Two coexisting universality classes exist: “cuspy” and “smooth” 
potentials (or uniform and progressive yielding rules) for yielding, 
with different flowcurve exponent β (and also z differs), but “the 
same” static critical exponents: τ, d

f
, ɸ, H.

● Thermal rounding anzats works without corrections in yielding at 
finite dimension.

● Smooth variation of exponents when interpolating between fully-
connected mean-field depinning and yielding in finite dimension.

● Yielding in finite dimensions can be described as an effective 
‘mean-field’, after characterization of the mechanical noise.

Take home messages



  

ATHERMAL CREEP 
BY CYCLIC 

PERTURBATIONS

EEF & EA Jagla, arXiv:2501.07782



  

Creeping hill-slopes in Soft Earth Geophysics



  

K. E. Daniels and D. J. Jerolmack, 
“Viewing earth’s surface as a soft-matter landscape”, 
Nature Reviews Physics 1, 700 (2019).

Soft Earth Geophysics



  

N. S. Deshpande, D. J. Furbish, P. E. Arratia, and D. J. Jerolmack, 
The perpetual fragility of creeping hillslopes,
Nature Communications 12, 3909 (2021).

Displacement 
of tracer pegs 

over a 17-
year interval 

(Poland)

Canonical soil-
mantled 

hillslopes,
California

Compilation of 
soil deformation 
data

Creeping hillslopes in Soft Earth Geophysics



Theoreticians can do experiments too!



  

Creeping granular heap

Deshpande et al. Nat. Comm. 12, 3909 (2021) 

Strain-rate maps

11 days after particle
activity persists !

Objective: demonstrate the existence 
of creep in a minimally disturbed model 
hillslope. 

Expect very slow creep rates (≤10−6m/s) 

Measure grain motions via spatially-
resolved Diffusing Wave Spectroscopy



  

“By probing a seemingly static sandpile with speckle imaging, our experiments 
have revealed a seething and ceaseless creeping motion—even in the near 
absence of mechanical disturbances”

“Creep occurred for all experiments and granular materials, and it persisted 
over all observed timescales (1) − 1)0)6 s)”

Heat pulse Tapping

Different experiments testing “geophysically-relevant disturbances”:

“Our system is intentionally prepared close to the critical state. Certainly, this 
means that creep rates are nearly as fast as they can be, and we expect them to 
slow exponentially with decreasing slope.”



N. S. Deshpande, P. E. Arratia, and D. J. Jerolmack,
“Athermal granular creep in a quenched sandpile”,
arXiv:2402.10338 (2024) Flowing layer

Bulk

“Surprisingly, at the cessation of surface 
flow and the ‘quenching’ of the pile, creep 
persists in the absence of the flowing layer; 
albeit with significant differences for a pile 
that experiences a long duration of surface 
flow (strongly annealed) and one where 
flow during preparation does not last long 
(weakly annealed).”

Within the surface flowing layer the 
dimensionless strain rate diminishes with 
depth, there is an absence of spatial 
correlations, and there is no aging dynamics.

Beneath this layer, the bulk creeps
via localized avalanches of plasticity, 
and there is significant aging.

C: spatial correlations of the strain field



Which are the creep mechanisms affecting quiescent 
heaps / soil dynamics? 

- Mechanically induced creep (wind, water, animals, earthquakes)

Yes, a possible mechanism, which explains creep in part

- Certainly not thermally activated creep (granular systems are ‘athermal’)

-Creep facilitated by periodic variation of parameters
(day/night, winter/summer temperature/humidity variations)



  

X

H. N. Moseley, “On the descent of glaciers”, 
Proceedings of the Royal Society of London 7, 333 (1856).

J. G. Croll, “Thermally induced pulsatile motion of solids”,
Proceedings of the Royal Society A 465, 791 (2009).

B. Blanc, L. A. Pugnaloni, and J.-C. Géminard, 
“Creep motion of a model frictional system”, Phys. Rev. E 84, 061303 (2011).

A very simple idea, but somehow under exploited



V

Our approach: models of depinning and yielding

“Thermo-mechanical ratcheting” in mechanical engineering



  

Cyclic Perturbations Facilitate Athermal Creep in Yield-Stress Materials

Depinning

Cy
cl

in
g

A
t 

fi
x

EEF and EA Jagla, arXiv:2501.07782

Yielding

n.n. interactions (d=2) Eshelby l.r. interactions (d=2)



  

Yielding flowcurves for different k and
Δɣɣ advance under k=k

L
↔k=k

S
 oscillations

Criticality at σ
c
 moves now to σ

0  
!!

apparent same exponents observed

Deformation Δɣɣ is maximal closer to σ
c

Under very slow oscillations of k we reach a 
steady state of fix advance Δɣɣ per period



  

Range of Δɣɣ>0 and divergent manifold width

For a fix  k
S 
, η increases for larger k

L 

Range in which we observe subcritical flow

maximal at k
S
=0

 
More evidence for criticality moving from σ

c
 

to σ
0  

when oscillating k

Width w ‘diverges’ with the same exponent:
- in σ

c
 for the simulation at fixed k=k

L

- in σ
0
 for the simulation at oscillating k

L
↔k

S
  



  

Depinning characterisics for different k and
ΔɣX advance under k=k

L
↔k=k

S
 oscillations

Criticality at f
c
 moves now to f

0  
!!



  

Range of ΔɣX>0 and divergent interface width

For 2D short-range depinning



  

Schematic movement of the oscillatory 
athermal creep



  

-When the external driving force f is below the critical threshold f
c
 required for a 

steady deformation, there is a regime in which the system exhibits synchronized 
evolution with the periodic variation of k (the global elastic rigidity).

-The deformation per cycle, ∆X, decreases as f is reduced and vanishes at a 
well-defined threshold f

0
, very much like “endurance limit” of fatigue.

-The system likely exhibits criticality at f
0
, analogous to its critical behavior at f

c
.

-Creep is more notorious close to σ
c
.

-Granular experiments showing “ceaseless creeping motion” support indirectly 
our hypothesis: periodic environmental changes (temperature/humidity) induce 
periodic oscillations in the system’s effective internal parameters.

Summary



  

“Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates”
E. E. Ferrero, E. A. Jagla
Soft Matter 15, 9041-9055 (2019)

“Elastic Interfaces on Disordered Substrates: From Mean-Field Depinning to Yielding”
E. E. Ferrero, E. A. Jagla
Phys. Rev. Lett. 123, 218002 (2019)

“Properties of the density of shear transformations in driven amorphous solids”
E. E. Ferrero, E. A. Jagla
JPCM 33 124001 (2021)

“Yielding of amorphous solids at finite temperatures”
E. E. Ferrero, A. B. Kolton, and E. A. Jagla 
Phys. Rev. Materials 5, 115602 (2021)

“Soil creep facilitated by cyclic variations of environmental conditions”
E. E. Ferrero, E. A. Jagla
ArXiv:2501.07782 (2025)
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