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Driven Disordered Systems

Agenda

L1. The depinning transition of elastic interfaces driven in 
disordered media and the creep motion at low driving

L2. The yielding transition of amorphous solids under 
deformation and associated criticality and avalanche statistics

L3. Common framework for depinning and yielding, analogies 
and recent endeavors in the field
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Pinning everywhere
Motivation

The leading edge of a lava 
flow destroys a road on 8 
February 2024 near the 
town of Grindavík, Iceland.

Photo by Mike Mezeul II, edited 
by Charlie Borst



  

Pinning everywhere
Motivation

Photo art by 
Elisabeth Agoritsas



  

A LARGE 
VARIETY OF 

PHYSICAL 
SYSTEMS



  

Motivation

Magnetic domain walls

DW in a Pt/Co/Pt thin film in the creep regime Lemerle, Jamet, Ferre, et al (LPS Orsay)
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Motivation

Magnetic domain walls

Pt/Co/Pt thin film

Domain wall

Domain 1

Domain 2



  

Motivation

Magnetic domain walls

Disorder vs Elasticity
(dynamic competition)

UP

 DOWN

What is the response to an 
applied field H in the UP direction?



  

Motivation

Magnetic domain walls

What is the mean velocity v 
for given applied field H and 
temperature T ?

A transport problem Interfaces Motion control → Applications (e.g. racetrack memories)

Statistical physics of driven disordered elastic systems  → Universality

Is the movement smooth, 
continuous? When?
When is it jerky, intermittent?

Is the interface flat or twisty?



  

Motivation

Magnetic Domain Walls

PMOKE @Bariloche

Magnetic domain walls

(Paris)
J. Ferré, J.P. Jamet, 
A. Mougin, V. Jeudy 
(Bariloche)
J. Curiale, S. Bustingorry 



  

Motivation

Ferroelectric domain walls
Ferroelectric Domain Walls
(Geneva)
P. Paruch, J. Guyonnet

Atomic Force Microscope (AFM)

piezoresponse force microscopy 



  

Motivation

Contact lines in partial wetting

Avalanches!

RoughnessContact lines in partial wetting

(Paris) Moulinet, Rolley.

Liquids with different viscosity: 
water, aqueous glycerol solutions, etc.

Plate moves up, interface “down”



  

Motivation

Contact lines in partial wetting
Evaporating drops: Do this at home!

Why do solutes accumulate in the borders?

Why don’t they just shrink like this?

“Capillarity and Wetting Phenomena” 
Pierre-Gilles de Gennes, Françoise Brochard-Wyart and David Quéré
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Motivation

Fracture lines: crack propagation

Fracture lines
(Lyon, Oslo, Paris)
Bonamy, Ponson, Santucci 

Transparent plates of Plexiglas 
sandblasted and annealed 
together

5 mm thick PMMA detached from a 20 mm 
thick PDMS. Disorder is introduced by 
printing ink dots of diameter 100μmm

~1999

~2020s



  

Motivation

Tissue growth: collective cell migration

Collective cell migration
(Barcelona) X. Trepat 

Burst of activity in collective cell migration
(Milan) S. Zapperi, C. La Porta

Universality?

PNAS 2016Trends Cell Biol. 2011



  

All examples so far: d=1 dimensional interfaces moving in a D=2 dimensional random media

Motivation

Disordered elastic manifolds

d: manifold dimension  N: degrees of freedom



  

THE 
DEPINNING 

TRANSITION



  

Toy example: motion of a particle with friction

A.-L. Barabási, H.E. Stanley “Fractal Concepts in Surface Growth” (1995)

Particle of mass m on a plane, driven by an external force F. 

Two friction forces: static friction F
c
 and dynamic friction ρ dr/dt. 

For F<F
c
: v=0. 

For F>F
c
 the e.o.m. is:

Pinned phase: F<F
c

Moving phase: F>F
c

Depinning transition

After a transient a constant velocity v is reached

Two regimes:



  

Depinning transition

Close to the critical position (last arrested point):

Particle on a random potential

tilt

Then the onset of sustained movement is

distance to criticality

Overdamped e.o.m

To have a finite velocity



  

Depinning transition

Particle on a random potential (cont.)

Typical time spent close to the critical position

Then

velocity-force characteristics sufficiently close to F
c
:

What about extended elastic lines, beyond one particle?



  

Depinning transition

Interface: collective motion

A.-L. Barabási, H.E. Stanley “Fractal Concepts in Surface Growth” (1995)

A critical force F
c
 emerges and depends on details as the disorder strength, 

disorder type, the elastic constant, ...

Phase transition:
-Below F

c
: non-moving

-Above F
c
: moving

Close to F=F
c
 mean velocity behaves as

As we approach F
c
 from above the dynamics becomes tortuous, punctuated. The line is blocked in larger 

and larger segments
Correlation length: size of the pinned regions:

non-moving moving



  

Depinning transition

Extended elastic interface in a disordered medium

● Elastic restoring forces: try to smooth the interface
● Quenched disorder forces: pins and distort the interface
● Driving force: pushes/pulls the interface
● Thermal noise: agitates stochastically & allows for activated jumps 

Dynamics governed by the interplay between disorder and elasticity



  

MODELING 
DEPINNING



  

Model: The Quenched Edwards-Wilkinson elastic line

external forcepinning forcelocal force due to 
elastic interactions

thermal noise

disorder potential, with correlator:

Langevin term, introduces a finite temperature T, white noise

Modeling

Assumptions: overdamped, uni-valued interface u(x) 



  

Disorder types: RB RF

Filled circles are the impurities that contribute to the pinning energy of the interface

EEF, L Foini, T Giamarchi, AB Kolton, A Rosso, Annu. Rev. Condens. Matter Phys. 12, 111 (2021)

Random-field (RF)

Random-bond (RB)

Phenomenology

is short ranged

Yet, the disorder force is short-
range correlated in both cases

is long ranged

RB case RF case

RF saves memory



  

The Quenched Edwards-Wilkinson elastic line

shakes

Modeling



  

Modeling

Typical numerical approach

➢ discretize x=0...(L-1)
➢ keep u(x,t) as a real variable
➢ periodic boundary conditions 
(u[0] coupled with u[L-1])

➢Continuous splines (cubic or linear) 
➢Either presorted (with p.b.c. also in u) 
or dynamically generated.
➢With or without memory (RF-RB)

● Line of size L ● Different disorder schemes

We want to solve:

as a continuum variable one discretizes keeping 

Massively parallel implementations on GPUs

https://editor.p5js.org/droyktton/full/kfhajdpOk

Play with the line 

And do Euler integration

EEF, S. Bustingorry, A.B. Kolton, PRE 87, 032122 (2013) sup.mat.



  

Play with the 
elastic line!

Let’s see who gets 
the best estimate 
of F

c



  

CRITICAL PHENOMENA 
IN DRIVEN PHASE 
TRANSITIONS



  

Critical phenomena

Analogy with equilibrium critical phenomena

[Daniel S. Fisher, “Sliding Charge Density Waves as a Dynamic Critical Phenomenon”, Phys. Rev. B 31, 1396 (1985)]

order parameter

divergent length scale

divergent time scale



  

Transition thermal rounding

order parameter

divergent length scale

divergent time scale

temperature/field rounding

(recap on Friday L3)

Critical phenomena



  

Depinning transition: experimentally tested

[J. Gorchon et al, 
PRL 113, 027205 (2014)]

[P.J. Metaxas et al. 
PRL, 99, 217208 (2007)]

[L.J. Albornoz et al, PRB 104, L060404 (2021)]

LPS, Paris-Sud CAB, BarilochePt/Co/Pt

GdFeCo

Critical phenomena



  

Phenomenology

Three reference states: line’s geometry!

At the reference points interface is rough and self-affine

EEF, S. Bustingorry, A.B. Kolton, A. Rosso, CRP 14 641 (2013)



  

Roughness

Critical interfaces: fluctuations - roughness

size
mean position

width
(roughness)

Mapping to random-walk (Directed polymer)
interface fluctuations

interface width

In general: 
(beyond RW)

roughness 
exponent

For a random-walk of the polymer:



  

Critical interfaces: time and finite size scaling

Starting from a flat interface:

A.-L. Barabási, H.E. Stanley “Fractal Concepts in Surface Growth” (1995)

: growth exponent : dynamical exponent

The crossover time depends on the system size

: roughness exponent
Since at saturation 

we have the scaling relation

Roughness



  

Critical interfaces: rough “self-affine” geometry

: fractal

Given piece of line of length    in a critical configuration, its width would be 

 Hölder or self-affine exponent, or the ‘roughness’ of u(x)

Roughness

Interface is self-affine, statistically invariant under the anisotropic rescaling:

: self-affine

(f=0) (f=f
c
)



  

Rough geometry: Structure factor

Roughness

Another way to measure roughness: interface structure factor

with

Essentially at the critical points:

For a given F>F
c



  

Rough geometry: Structure factor

Roughness

Starting from a flat line at f=f
c

EEF, S. Bustingorry, A.B. Kolton, PRE 87, 032122 (2013)memory of the initial condition

ling using:



  

Rough geometry: Structure factor

Roughness

In the steady state at f=f
c

EEF, S. Bustingorry, A.B. Kolton, PRE 87, 032122 (2013)



  

Critical interface: critical exponents

Velocity force characteristics:

Correlation length:

Correlation time:

Critical fluctuations, roughness:

Four critical exponents:
Not all independent!

Critical phenomena

e.g., at depinning the movement is dominated by avalanches

u(x)

Hiperscaling relation



  

qEW critical exponents (from non-steady critical relaxation)

Critical phenomena

EEF, S. Bustingorry, and A. B. Kolton PRE 87, 032122 (2013)

+ Statistical-tilt 
symmetry relation

After a quench from f→∞ (flat line)

Using yet another analogy with equilibrium critical phenomena

Using



  

Avalanches at the depinning transition

A. Rosso, P. Le Doussal, K. Wiese, PRB 80, 144204 (2009)

● Gutenberg–Richter exponent τ
dep

 is universal

● S
c
 is the clear manifestation of the divergent correlation length

Avalanches

● Avalanche size statistics is scale-free

● Avalanche location cannot be predicted

Narayan-Fisher relation

Quasistatic protocol to measure avalanches: starting with 
f~<f

c
 progressively push the line by tiny amounts

K. Wiese Rep. Prog. Phys. 85 (2022) 086502



  

Depinning avalanches



  

Phenomenology

Global picture depinning summary (QEW model in d=1)

EEF, S. Bustingorry, A.B. Kolton, A. Rosso, CRP 14 641 (2013)

At equilibrium, mean velocity is zero and the dynamics 
is glassy (highly degenerated GS): in order to observe a 
rearrangement of size l we need to overcome a barrier 
E

b
(l) growing as E

b
~lθ. The resulting roughness ζ depends 

on the type of disorder

At the zero temperature depinning transition, the velocity 
vanishes as v(f,T=0)~(f−f

c
)β for f > f

c
, while v=0 for f<f

c
. 

At finite temperature, this sharp transition is rounded and 
the velocity behaves as v(f

c
,T)~Tψ. A thermal creep is 

observed even at f<<fc.

At large force, f>>f
c
, in the fast-flow regime, we recover 

the linear response v~f. Here impurities generate an 
effective thermal noise on the interface with T

eff
−T~Δ/v 

(Δ being the disorder strength). The fast-flow roughness 
corresponds to the Edwards–Wilkinson roughness



  

Modeling

Beyond qEW: Long range elasticity

For the case of a contact line of a liquid meniscus as well as the crack front 
of a brittle material, the local elastic force is replaced by a long-range one

Qualitative phenomenology is similar to the qEW, but the universal properties 

are different. However, for α ≥ 2, one recovers the short-range universality class

EEF, L Foini, T Giamarchi, AB Kolton, A Rosso, Annu. Rev. Condens. Matter Phys. 12, 111 (2021)
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Modeling

Beyond qEW:  quenched KPZ (Kardar–Parisi–Zhang) model

In the presence of anisotropies in the disorder or in the elastic interaction, a non-linearity 
becomes relevant for short-range elasticity. An anharmonic term comes in

At depinning, the motion remains intermittent with large avalanches but with different exponents. 

Statistical tilt symmetry relation is no longer valid and we need to measure 3 independent exponents

Kardar, Parisi, Zhang, PRL. 56, 889 (1986) EEF, L Foini, T Giamarchi, AB Kolton, A Rosso, Annu. Rev. Condens. Matter Phys. 12, 111 (2021)



  

Beyond qEW: Not uni-valued interface? → ɸ4 model 
Modeling

AB Kolton, EEF, A Rosso PRB 108, 174201 (2023)

In general: overhangs, 
fingers and bubbles
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2
0
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0
) Ginzburg-Landau equation for a scalar 

order parameter field

video



  

CREEP



  

Creep motion
➔ Ultra-slow dynamics ruled by activation

Assumptions
● Static (as-equilibrium) description of the interface 

at f>0 *.

● Forward motion delivered by independent jumps 
over “typical” barriers…..

*true below certain scale, FRG [Chauve et al. PRB 2000]

➔ Velocity dominated by collective forward motion 

Creep

Divergent barriers as f→0 (glassy dynamics)

From scaling arguments:

Required rearrangement for barrier jump



  

u(x)

Energy gain of an avalanche of size             :

Scaling Arguments

(Ioffe-Vinokur 1987, Feigel'man 1989, Nattermann 1990) 

Balancing

Creep:Ultra-slow activated dynamics

Barriers (or sample to sample fluctuations)

Assuming an Arrhenius time for barrier jump



  

Creep formula

Creep exponent

Experimental success!

and later on elsewhere…
[K.-J. Kim et al Nature 2009]
[J. Gorchon et al. PRL 2014]
[V. Jeudy et al. PRL 2016]
[M. Grassi et al. PRB 2018]

Creep law
Creep

S. Lemerle, J. Ferré  et al. PRL 80, 849 (1998)



  

Non-universal intrinsic T dependencies

Creep experiments: First in 1998 and many after

[J. Gorchon et al, PRL 113, 027205 (2014)]

Creep

V. Jeudy et al PRL 117, 057201 (2016) 



  

N.B. Caballero et al. Phys. Rev. B 96, 224422 (2018)

Creep experiments @Bariloche

~8 orders of magnitude of creep law !

Creep

~8 orders

From walking velocities to finger-nails growth velocity



  

Creep motion
Creep

● Are there “typical” creep events? 
● How is the size distribution of those activated events?
● What is their organization in space and time?  

Can we simulate creep?

Phenomenological law works well, but: 

Historic timeline

Scaling args[3]

Experiment[4]

Functional Renormalization
Group analysis[1]

Numerics[5]

1987

1998

2000

2005

20161990



  

Langevin dynamics fails to study creep 

➢ “Useless” local back and forth futile motion, 

vibrations at finite T (acceptance is not the issue)

➢ Arrhenius limit: the line advances only due to 

rare events (very slow motion)

➢ Barriers diverge when f→0, the regime of 

interest.

f~0.5 f
c
 and non-negligible T

The futility problem for f<f
c
 at T>0

Creep



  

Discrete polymer of size L defined by:

 hard metric constraint

e
n

e
rg

y

path

Exact algorithm: successive (forward) search of new 

metastable states connected by minimal barriers.

Kolton et al. PRL 97 057001 (2006), PRB 79 18207 (2009)

Modeling Transition pathways algorithm for T=0+

Proposed approximation: 
look for minimal barrier     smallest favorable move

• Exponential cost in 

• Limited to

Creep



  

“Creep events” connect one metastable state and the next one.

“Activated” part: Dijkstra's search* (O(L log L))

to find the smallest rearrangement that decreases E

Start with l
nuc

=1 and increase it until we find a favorable nucleus.

Deterministic part: simple relaxation to the local minimum. 

Polymer follows the energy gradient by elementary moves.

+ both steps implemented in parallel on GPUs

*also called “transfer matrix method”

Each event, composed by two steps:

Two orders of magnitude improvement respect to exact algorithm

(system sizes L=3360 and driving forces f~0.002 reached)

Creep

Modeling: Two steps creep algorithm (T=0+)

e
n

e
rg

y

path



  

Creep events size distribution

Reason? events are not uncorrelated

Similar to Gutenberg-Richter exponent 
anomaly in earthquakes models

anomalous 
exponent

RB disorder

● Power-law distributed when  

● Collapse with

● Anomalous 

Event sizes are not distributed around a “typical” value

Creep law is safe! :^)

Creep



  

Event patterns and activity maps

Events like “aftershocks”

Cluster size S
clust

Creep

Uncorrelated avalanches



  

Creep events



  

Clusters size distribution

Small size → equilibrium-exponent
Large size → depinning-exponent

➔ Upper cutoff controlled by system size.

Structure factor

 at short length-scales

at large length-scales

Creep



  

● Distribution of creep events is power-law with 
cutoff characterized by

● Creep events are correlated in space and time 
sequence.

● Large clusters of events behave like depinning 
avalanches at the far away critical point.

Creep prediction & phase diagram

E.E.Ferrero, L. Foini, T. Giamarchi, A.B. Kolton, A. Rosso PRL 118, 147208 (2017)

Creep

Geometry ↔ Transport!! deduce velocity from the 
structure factor and vice versa



  

Experimental realizations of spatiotemporal patterns 
Creep

Creep events accumulate in depinning clusters!

Evidence favors 
qEW over qKPZ



  

Experimental realizations of spatiotemporal patterns 
Creep

Creep events accumulate in depinning clusters

Evidence favors qKPZ over qEW !!!



  

“Non-steady relaxation and critical exponents at the depinning transition”
E. E. Ferrero, S. Bustingorry, A. B. Kolton, Physical Review E 87, 032122 (2013)

“Numerical Approaches on Driven Elastic Interfaces in Random Media”
E. E. Ferrero, S. Bustingorry, A. B. Kolton, A. Rosso, Comptes Rendus Physique 14, 641 (2013)

“Uniqueness of the thermodynamic limit for driven disordered elastic interfaces”
A. B. Kolton, S. Bustingorry, E. E. Ferrero, A. Rosso, Journal of Statistical Mechanics: Theory and Experiment (JSTAT) P12004 (2013)

“Spatiotemporal Patterns in Ultraslow Domain Wall Creep Dynamics”
E. E. Ferrero, L. Foini, T. Giamarchi, A. B. Kolton, A. Rosso, Physical Review Letters 118, 147208 (2017)

“Magnetic domain wall creep and depinning: a scalar field model approach”
N. B. Caballero, E. E. Ferrero, A. B. Kolton, J. Curiale, V. Jeudy, S. Bustingorry, Physical Review E 97, 062122 (2018)

“Elastic Interfaces on Disordered Substrates: From Mean-Field Depinning to Yielding”
E. E. Ferrero, E. A. Jagla, Phys. Rev. Lett. 123, 218002 (2019)

“Creep motion of elastic interfaces driven in a disordered landscape”
E. E. Ferrero, L. Foini, T. Giamarchi, A. B. Kolton, A. Rosso,  Annual Review of Condensed Matter Physics 12 pp 111-134 (2021)

“Universal critical exponents of the magnetic domain wall depinning transition”
L. J. Albornoz, E. E. Ferrero, A. B. Kolton, V. Jeudy, S. Bustingorry, J. Curiale, Phys. Rev. B 104, L060404 (2021)

“Depinning free of the elastic approximation”
A. B. Kolton, E. E. Ferrero, A. Rosso, Phys. Rev. B 108, 174201 (2023)

“Soil creep facilitated by cyclic variations of environmental conditions”
E. E. Ferrero, E. A. Jagla, arXiv:2501.07782

\begin{advertising}

\end{advertising}



  

Thanks!
www.ezequielferrero.com
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