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Yielding of amorphous solids at finite temperatures
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We analyze the effect of temperature on the yielding transition of amorphous solids using different coarse-
grained model approaches. On one hand, we use an elastoplastic model, with temperature introduced in the
form of an Arrhenius activation law over energy barriers. On the other hand, we implement a Hamiltonian
model with a relaxational dynamics, where temperature is introduced in the form of a Langevin stochastic
force. In both cases, temperature transforms the sharp transition of the athermal case in a smooth crossover.
We show that this thermally smoothed transition follows a simple scaling form that can be fully explained using
a one-particle system driven in a potential under the combined action of a mechanical and a thermal noise,
namely, the stochastically driven Prandtl-Tomlinson model. Our work harmonizes the results of simple models
for amorphous solids with the phenomenological ∼T 2/3 law proposed by Johnson and Samwer [Phys. Rev.
Lett. 95, 195501 (2005)] in the framework of experimental metallic glasses yield observations, and extend it to
a generic case. Conclusively, our results strengthen the interpretation of the yielding transition as an effective
mean-field phenomenon.
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I. INTRODUCTION

Amorphous materials are neither perfect solids nor simple
liquids. Foams and emulsions, colloidal glasses, oxide and
metallic glasses, glassy polymers, and some granular media
preserve at rest a solid structure, but will flow if a suffi-
ciently large load is applied to them. Accordingly, in the
rheology of complex fluids [1] they are often referred to as
“yield-stress materials.” The transition between the solidlike
elastic response and the irreversible plastic deformation is
known as the yielding transition [2]. Statistical physicists have
regarded it as a dynamical out-of-equilibrium phase transi-
tion, similar to the depinning transition of elastic manifolds
in random media [3], and under the light of equilibrium
phase transitions theory. Notably, the bulk of recent theoretical
work on the yielding transition of amorphous solids has been
devoted to the case in which the effect of temperature is dis-
regarded. Both elastoplastic models and molecular dynamic
simulations have focused on describing and understanding
the athermal deformation and related critical phenomena
[2,4,5]. Alike the effect of a small external magnetic field in
the ferromagnetic-paramagnetic transition of a magnet (say,
Ising model), when a finite temperature is taken into ac-
count in the deformation of amorphous solids it is expected
to round up the yielding transition, as it does in depinning
[6,7].

When the elementary constituents of the material are large
enough (�1 μm) to neglect Brownian motion effects, an
athermal approach is well justified and can be even quanti-
tatively predictive (e.g., in dense granular suspensions, dry

granular packings, foams, and emulsions).1 Yet, thermal fluc-
tuations may play a role in materials with small enough (�
1 μm) elementary constituents, e.g., colloidal and polymeric
glasses, colloidal gels, silicate, and metallic glasses. For those
materials, thermally activated events cannot be immediately
disregarded. It happens typically, though, that driven systems
respond on much shorter times than quiescent aging systems;
then, some thermal materials may be treated as athermal for all
practical purposes when considering mechanical deformation.
Nevertheless, the most interesting physical behavior emerges
when the thermal agitation and driving time scales compete,
either because temperature is high enough or because the
driving is slow. The yielding transition, the limit of vanishing
strain rate itself, is of course within this scope.

In a famous paper [8] Johnson and Samwer (JS) analyzed
the behavior of a broad range of metallic glasses, finding
a universal temperature correction to the compressive yield
strength scaling as ∼T

2
3 :

τcT = τc0
(
1 − [AT ln(ω0/Cγ̇ )]

2
3
)
, (1)

where τcT is the compression stress at yielding at temperature
T , and τc0 the corresponding value at T = 0. This law was

1Notice that temperature can manifest itself in dependencies of
intrinsic properties [2] of the material, like for example “average
bubble size” in a foam, even when there is no relevant “agitation”
or thermal activation. When we say “athermal” here we mean no
relevant thermal motion.
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derived by estimating the transition rate over typical energy
barriers in a Frenkel-type construction for the elastic energy
of shear transformation zones, using an attempt frequency ω0

and a typical height of barriers that vanishes as a 3
2 power of

the stress remaining to reach instability.2

The JS ∼T
2
3 law was recovered by molecular dynamics

(MD) simulations of two-dimensional (2D) Lennard-Jones
glasses in Ref. [9]. This time, not just the stress at yield but
the full flow curve was tested for thermal effects and compared
with the athermal case. In that numerical work, the following
law was proposed and shown to hold for the steady-state stress
σ as a function of T at a stationary value of γ̇ :

σ (γ̇ , T ) = σc + A1

√
γ̇ − A2T

2
3 [ln(A3T

5
6 /γ̇ )]

2
3 . (2)

Finally, a refinement of the theoretical derivation for the ∼T
2
3

law was proposed in [10], basically following the same prin-
ciple of Arrhenius-type activation of Eshelby events, with
barriers Ub ∼ (1 − σ/σc)3/2. In this work we will interpret
Johnson and Samwer’s ∼T

2
3 law as a particular case of our

derived scaling laws for the thermal rounding of yielding,
which are not restricted to a sole kind of energy barriers.

Some endeavors in understanding thermal effects in the
deformation of amorphous solids proceeded along the path of
analyzing the elementary plastic events and their temperature
dependence [11–14]. But, the vast majority of literature de-
voted to the statistical aspects of the yielding transition (e.g.,
[4,5,15–23]) has largely ignored the thermal case. Only very
recently a paper by Popovic and co-workers appeared dis-
cussing the thermal rounding of the yielding transition [24].
They show that indeed a scaling law for the thermal round-
ing holds in numerical simulations and prove it analytically
for the Hèbraud-Lequeux model. Interestingly, the thermal
rounding scaling with roots in mean-field theory of charge-
density waves depinning [25,26] works very well in spatially
distributed systems for the description of yielding, essentially
with no corrections. While this is somehow good news from
the phenomenological point of view (since it simplifies the
physical laws to be considered in more applied fields), it
contrasts with the yielding theories claiming nontrivial corre-
lations and corrections to scaling in finite dimensions [27,28].

In this work, we will discuss along these lines, hoping
to bring some light to the latter issue. First, we recall the
behavior of thermal rounding in a well-studied depinning case

2Note that τcT is the applied stress at which a minimum threshold
strain rate deformation γ̇ is experimentally detected, and may or may
not correspond to an asymptotic stress at vanishing strain rate. In
general, there is a “stress overshoot” [64] in the deformation of soft
glassy materials, which depends on strain rate, aging, and sample
preparation. Therefore, the (dynamical) yield stress, i.e., the steady-
state stress in a quasistatic deformation, is different from the stress at
the onset of yielding. Yet, in most (if not all) of the works on metallic
glasses cited in Ref. [8], the data correspond to “poorly annealed”
systems. The stress at the onset of yielding in such systems, defined
at the deviation from the elastic regime, is itself already very similar
to the stress value expected in an extrapolated steady state, as no
stress overshoot is observed in the data. Thus, we take the freedom
to interpret the finding of [8] in the steady-state context of our work.

[29], to show that indeed in short-ranged interaction systems
corrections to scaling are expected. After that, we present
the possible scenario for thermal rounding of yielding ob-
tained by a generalization of the arguments used in depinning.
Then, we present results of numerical simulations on two
different coarse-graining frameworks that have been proposed
to study the yielding transition. One is the familiar case of
elastoplastic models that have been used to describe yielding
for quite a long time already [2]. We introduce temperature
in these models as an Arrhenius activation probability over
finite-energy barriers. The second framework we consider is a
Hamiltonian model in which many mean-field-like character-
istics of yielding have been discussed in recent years [22,23].
Finally, we analyze the results we obtain in both of these ex-
tended systems to the light of a one-particle “mean-field”-like
model, the Prandtl-Tomlinson (PT) model of friction [30] with
stochastic driving [31]. The thermal rounding behavior of this
model also displays3 a ∼T

2
3 phenomenological law analogous

to the one proposed by Johnson and Samwer [8].

Thermal rounding scaling

In standard critical phenomena a symmetry-breaking ex-
ternal field transforms a sharp transition into a crossover. For
the paradigmatic ferromagnetic-paramagnetic equilibrium
phase transition the magnetization (m) as a function of tem-
perature (T ) and magnetic field (h) satisfies (sufficiently close
to the critical point T = Tc, h = 0) the following scaling rela-
tion:

m(T, h) = haF ((T − Tc)/h1/b) (3)

with F a universal scaling function. The critical exponent
a quantifies the effect of magnetic field right at Tc. In the
limit of h → 0 this expression must become field independent,
and, then, it reduces to the critical form m ∼ (Tc − T )β with
β = ab.

For the depinning transition of elastic manifolds, a thermal
rounding scaling expression was proposed a long time ago
by Fisher [32,33] (and numerically tested by Middleton [26])
based on the analogy with equilibrium phase transitions. With
the velocity v as the order parameter, the force f as the control
parameter and the temperature T as a “symmetry-breaking
field” destroying the pinned phase, it has the form

v( f , T ) = T ψG(( f − fc)/T 1/α ). (4)

As for standard phase transitions, a new exponent ψ > 0 is
introduced, describing the smearing effect v ∼ T ψ at f = fc.
The form of the scaling function G is such that for T → 0
we reobtain the expected critical behavior v ∼ ( f − fc)β with
β = αψ at T = 0. The driving force in the depinning tran-
sition thus plays the role of the temperature in the magnetic
system, and temperature the role of external magnetic field.
Equation (4) can be shown to rigorously apply in the fully
connected mean-field problem [32] or, equivalently, in the
problem of a single particle driven on a disordered potential

3See [51] for the case without stochastic driving, particularly
Eqs. (A20) and (A39), and also [65].
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[34–36]. Yet, in the more standard situation for the depin-
ning problem, namely, short-range elasticity of the manifold
in finite dimensions, the precise assessment of the thermal
rounding has proved to be non-mean field and tricky [37].
For instance, the numerically determined value of the ψ

exponent varies widely among different models [36,38–43].
Furthermore, the scaling form [44] and its universality has
been questioned [26]. Even if ψ was a universal exponent,
it is not clear whether it is an independent exponent or it is
related to other depinning exponents. More recently, general
arguments have suggested that Eq. (4) may not be generic, but
rather a special case [29], and recent works show that elastic
lines in uncorrelated [36] and correlated potentials [29] in
finite dimensions display logarithmic corrections that cannot
be accounted for by the mean-field scaling form.

Athermal amorphous solids undergo a yielding transition
well described by the so-called Herschel-Bulkley law relating
the deformation rate γ̇ and the applied stress σ ,

σ = σc + Aγ̇ n, (5)

with n > 0 and σc the critical stress, which sometimes is
written as

γ̇ = A−1(σ − σc)β (6)

with β = 1/n. Most yield stress materials in the laboratory
show an exponent n close to 0.5 (β � 2), within a relatively
broad range of variation [1]. Some of us have recently found
that two-dimensional elastoplastic models display exponents
β � 3

2 or β � 2, according to the local yielding rate for an
overstressed site i being, respectively, constant or stress de-
pendent (as

√
σi − σYi, with σYi the local instability threshold)

[21]. Furthermore, these rules were mapped to the cases of
“cuspy” and “smooth” disordered potentials in alternative
Hamiltonian models for yielding [21,23]; that in turn allows
to understand the existence of such a β exponent dichotomy
when comparing them with the problem of a particle stochas-
tically driven in a disordered potential [45], which allows to
justify those two values.

Along the lines followed for the depinning transition, the
zero-temperature flow-curve expression [Eq. (6)] can be read-
ily generalized to a proposal for the thermal rounding of the
yielding transition

γ̇ (σ, T ) = T ψG((σ − σc)/T 1/α ). (7)

The form of the scaling function G in Eq. (7) is expected to
have, for a large negative argument x, a leading term which is
exponential in xα , reflecting in this limit the thermal activation
over barriers that scale as (σc − σ )α . If we thus use G(x) =
C1 exp[−C0(−x)α] for large negative x in Eq. (7), and invert
to obtain σ , we get

σ (T ) = σc − [C−1
0 T log(C1T ψ/γ̇ )]1/α (8)

which can be matched with the JS expression (up to leading
terms) if α turns out to be 3

2 . We will see in fact that this
is the value of α that corresponds in our simulations to the
case of smooth potentials since they generate an energy barrier
vanishing as (σ − σc)3/2 as the critical stress is approached.

If Eq. (7) describes correctly the full rounding of the
transition, it must also work for positive arguments of the
G function, in particular for T → 0. If this is the case, G(x)

for large positive x must behave as ∼xαψ to cancel out the T
dependence, showing that the ψ exponent is not independent
but is given in terms of the barrier exponent α and the flow
exponent β as ψ = β/α. We will show that in fact this holds
for ψ both in the case of “cuspy” (α = 2) and “smooth”
(α = 3

2 ) potentials since the kind of underlying disordered
potential also determines the flow-curve exponent β.

Here we not only confirm numerically the good agreement
with the scaling predicted by Eq. (7) but also clarify its ori-
gin. We also justify the validity of Eq. (7) as is, without the
corrections to scaling that are expected in low-dimensional
cases with short-range elasticity [29]. Therefore, as we discuss
deeper in the following, the finding that for yielding Eq. (7) is
indeed very well satisfied can be considered as a manifestation
of the mean-field-like nature of the yielding phenomenon.

In the next section we briefly present the two main nu-
merical approaches that we use, namely, elastoplastic and
Hamiltonian models, leaving a slightly more detailed presen-
tation for Appendix A. Then in Sec. III we show results in both
kinds of models, displaying a very robust thermal rounding
scaling. In Sec. IV we interpret those results in terms of the
single-particle Prandtl-Tomlinson model in the presence of
thermal and mechanical noise. Finally, Sec. VI contains a
discussion and summary.

II. MODELS

We run simulations of two different kinds of coarse-
grained models of amorphous solids: On one hand,
“Hamiltonian models” in which disorder is encoded in
quenched potentials, the evolution equation of local strains is
given by forces derived from a potential and the stochastic
process is Markovian. On the other hand, “classical EPMs,”
where the instantaneous state of elastoplastic blocks con-
stitutes a local “memory” and the system evolution is not
necessarily Markovian. In the following we give a minimal
description of both frameworks. See Appendix A for a more
complete presentation and references to the literature.

A. Hamiltonian model

In the Hamiltonian model we consider the local strain
e(r, t ), that we will write ei when discretized on a numeri-
cal cubic mesh. The temporal evolution of ei is through an
overdamped dynamical equation of the form

∂ei

∂t
= −dVi

dei
+

∑
j

Gi je j + σ +
√

T ξi(t ). (9)

Here σ is the applied stress, and the strain rate γ̇ is calcul-
ated as

γ̇ ≡ dei

dt
= −dVi

dei
+ σ (10)

with the bar indicating spatial averaging.
The athermal version of this scalar model can be formally

derived from a fully tensorial description of the problem (see
Appendix A 1 and [46]). In Ref. [46], it is seen how the
long-range interaction term Gi j in (9) arises from the internal
constraints associated with Saint-Venant compatibility condi-
tions [45,47], and results to be of the Eshelby type [2]. We
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now further incorporate temperature through the stochastic
term ξ (t ) satisfying

〈ξi(t )〉 = 0, (11)

〈ξi(t )ξ j (t
′)〉 = 2δ(t − t ′)δi j . (12)

The potentials Vi are disordered potentials, uncorrelated in
space, that represent the disordered nature of our amorphous
material. We consider two different forms for these poten-
tials, that we call “cuspy” and “smooth.” They are defined in
Appendix A 1. Both cases describe potentials with many dif-
ferent local minima. The main difference between the two
cases is that in the smooth case the force is continuous,
whereas in the cuspy case there are discontinuities in the force
when moving from one basin to the next.

B. Elastoplastic model

Two-dimensional elastoplastic models (EPMs) can be de-
fined by a scalar field σ (r, t ), with r discretized on a square
lattice and each block σi subject to the following evolution in
real space:

∂σi(t )

∂t
= μγ̇ ext +

∑
j

Gi jn j (t )
σ j (t )

τ
, (13)

where γ̇ ext is the externally applied strain rate, and the kernel
Gi j is the Eshelby stress propagator [48]. Gii < 0 sets the
local stress dissipation rate for an active site. The form of
G is G(r, r′) ≡ G(r, ϕ) ∼ 1

πr2 cos(4ϕ) in polar coordinates,
where ϕ ≡ arccos[(r − r′) · rγ̇ (ext) ] and r ≡ |r − r′|. For our
simulations we obtain Gi j from the values of the propagator
in Fourier space Gq, defined as

Gq = − 4q2
x q2

y

(q2
x + q2

y )2
(14)

for q 
= 0, and Gq=0 = −1.
The elastic shear modulus μ = 1 defines the stress unit,

and the mechanical relaxation time τ = 1, the time unit of the
problem. The last term of (13) (for j 
= i) constitutes a me-
chanical noise acting on σi due to the instantaneous integrated
plastic activity over all other blocks in the system.

The picture is completed by a dynamical law for the local
state variable ni = {0, 1}. Typically, a block yields (n : 0 →
1) when its stress σi reaches a threshold σYi and recovers its
elastic state (n : 1 → 0) after a stochastic time of order τ . We
will present results for both an EPM with a finite recovery
time τoff = τ and one with instantaneous stress release events
τoff → 0. The important addition to classic models is that
we now allow for thermal activation at finite temperature
T > 0. This is, even when the local stress is below the lo-
cal threshold σi < σYi, the site is activated with probability
exp[−(σYi − σi )α/T ] per unit time. The case of EPMs with
constant (stress-independent) local yield rates, as the ones
we limit to in this work, can be directly related to the case
of cuspy potentials in the Hamiltonian model [21]. We then
believe that the choice of the parameter α in the thermal
activation rule is not arbitrary but should respect the same

analogy among model approaches. Therefore, here we use
α = 2 which is the barrier exponent in a parabolic potential.
See Appendix A for all the details.

III. RESULTS

A. Thermal rounding in the Hamiltonian model

We start by presenting the results of our numerical simu-
lations for the Hamiltonian model described in Sec. II A. In
Fig. 1(a) we see the strain rate vs stress curve (the flow curve)
in a 2D system of size 512 × 512, with disordered potentials
formed by concatenation of parabolas which is an instance
of the cuspy case. The effect of temperature is clearly visible
as it generates finite values of strain rates even below the
zero-temperature critical stress σc, that was estimated from
a power-law fit of the flow curve corresponding to zero tem-
perature. From the zero-temperature fitting we also determine
the flow exponent, that to a good approximation turns out to be
β = 3

2 , as previously reported for this kind of potential [23].
The effect of temperature is more clearly visible plotting the
y axis in logarithmic scale [Fig. 1(b)]. In this logarithmic plot,
it is also clearer the possibility to collapse curves at different
temperatures in a single scaled curve. This is done in Fig. 1(c),
using the scaling proposed in Eq. (7) with α = 2 and ψ = 3

4 .
The scaling collapse is very good. It extends to a wide range
around σc (at least of � 30% of σc), and to temperatures up to
� 0.02 (to be compared with the reference energy value ∼1
that is the typical height of local barriers when σ = 0).

The rationale behind the values of the exponents used in
the previous scaling collapse is the following. The value of
α = 2 indicates that the activation barrier for σ slightly below
σc grows as (σc − σ )2, which is consistent with the straight-
forward result obtained in a one-particle system (see Sec. IV),
considering the cusps between successive parabolic pieces of
the potential in which a particle moves. As we know from
previous works [21,23,31], the kind of disordered potential
will also determine β. Therefore, we say that α and β should
be “compatible.” In fact, if Eq. (7) is to be applicable to
the limit T → 0, then the T dependence in this limit must
vanish, providing ψ = β/α = 3

4 (β = 3
2 and α = 2 in this

case), which is precisely the value used in Fig. 1(c) to obtain
a good collapse of the data.

A similar analysis and scaling can be done for the case of
smooth potentials, here constructed by combining sinusoidal
functions (see Appendix A). Results (for a system of size
256 × 256) are shown in Fig. 2. We see that in this case the
range of validity of the scaling is somewhat more limited in
extent than in the previous case. This is simply a consequence
of the fact that the extent of the critical region of the T = 0
case is smaller.4 The values of the exponents that are expected
to fulfill the scaling are β = 2 and α = 3

2 (see Sec. IV and
[23,31]). Requiring the exponent ψ to satisfy the relation
ψ = β/α, it results ψ = 4

3 . From the collapse of Fig. 2(c) we
conclude that the scaling of Eq. (7) works perfectly well also
in the present case of β = 2 and α = 3

2 , thus indicating that

4At large enough values of σ the system will always cross over to
a fast-flow regime where γ̇ ∼ σ .
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FIG. 1. (a) Different temperature flow curves for a two-
dimensional Hamiltonian system of size 512 × 512, with parabolic
potentials. The rightmost curve T = 0 fits well a form γ̇ ∼ (σ −
σc )3/2 close to σ = σc = 0.7142 (indicated by a vertical dashed line).
(b) Same data in log-lin scale. (c) Scaling using ψ = 3

4 , α = 2
(compatible with β = ψα = 3

2 ).

the thermal rounding scaling is robust with respect to details
of the form of the disordered potential.

B. Thermal rounding in elastoplastic models

We now test the thermal rounding scaling of Eq. (7) in
different EPMs. First, notice that many classical EPMs (e.g.,
[5,17,48]) consider a common local threshold for all sites and
a local stochastic rule to define the precise moment of the
local yielding. In the construction of T > 0 EPMs we have
chosen instead to use distributed local thresholds (as in [49])
and immediate yielding upon reaching the threshold, avoiding
an extra stochastic rule for the site activation. Instead, we now
include the possibility for a site to be activated by temperature,
with a probability exp[−(σYi − σi )α/T ] (see Appendix A).

In Fig. 3 we show flow curves at different temperatures
for an EPM with exponentially distributed thresholds (σYi =
1 + 0.1re, with re an exponentially distributed random num-
ber) and instantaneous plastic events, i.e., the stress relaxation
occurs in a single time step. Figure 3(a) shows the flow curves
in log-lin scale. Using a σc = 0.8095 obtained by extrapolat-
ing the T = 0 flow curve, the expected “universal” exponent
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FIG. 2. (a) Flow curves at different temperatures for a two-
dimensional Hamiltonian system of size 256 × 256, with smooth
potentials. The rightmost curve T = 0 fits well a form γ̇ ∼ (σ − σc )2

close to σ = σc = 0.6535 (indicated by a vertical dashed line).
(b) Same data in log-lin scale. (c) Scaling using ψ = 4

3 , α = 3
2

(compatible with β = ψα = 2).

β = 3
2 for this kind of EPM,5 and the corresponding value of

α = 2 used in the activation rule, we observe a good collapse
in a wide range of temperatures and strain rates for the scaling
(7) with ψ = β/α = 3

4 .
If we now add a bit more of phenomenology in the

elastoplastic modeling and allow for a “finite duration” of
plastic events,6 we start to lose the formal analogy with the
Hamiltonian systems. In particular, the dynamics is now non-
Markovian due to the local state memory [see (A14)]. Yet,
we can still test the thermal scaling (7). In fact, flow curves
at T = 0 for EPMs with finite event duration were seen to
recover the β exponent prescribed by the Hamiltonian systems
and derived from the PT model, but only at small enough
strain-rate values and with deviations out of the scaling regime
ascribed precisely to the finite duration of the events [21].

5EPMs with a uniform yielding rate are analogous to the case of
cuspy potentials [21].

6Of physical relevance even for overdamped systems where it is
expected to scale as the ratio between an effective microscopic vis-
cosity and the elastic shear modulus [2].
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FIG. 3. (a) Flow curves at different temperatures for a two-
dimensional EP model of size 2048 × 2048, with renewable
thresholds taken randomly from a distribution and instantaneous
plastic events. The barrier coefficient used is α = 2. The continuous
black line corresponds to T = 0. (b) Scaling (7) using ψ = 3

4 , α = 2
(compatible with β = ψα = 3

2 ).

Figure 4 shows flow curves at different temperatures for an
EPM with randomly distributed thresholds (σYi = 1 + 0.1re,
with re an exponentially distributed random number) and a
finite duration for plastic events (τoff = 1). We first observe
that the finite duration of the events modifies the estimated
critical stress σc, which is highly nonuniversal, with respect to
the one of Fig. 3. The scaling displayed in the main plot of
Fig. 3(b), using ψ = 3

4 and α = 2 is not bad, but also not per-
fect. In particular, it is displeasing to see that the curves do not
strictly collapse at σ = σc. Since the true critical region and
the existence of universal exponents can be limited to a range
of very small strain rates and stresses around the critical point,
we checked the possibility of having a better collapse with an
effective value of β that takes into account the possibility of
corrections to the ideal scaling. The inset of Fig. 4(b) uses
β � 1.42 while keeping α = 2 and ψ = β/α(= 0.71). This
scaling looks better in a wider range of γ̇ − σ values and the
scaling assumption (7) perfectly holds. The effective exponent
β � 1.42 is the one that we would fit from the flow curve at
T = 0 in the range of stresses [1 × 10−4, 5 × 10−3] above σc.

Previous works [21–23,31] have indicated that EPMs and
the Hamiltonian description are equivalent in some limiting
cases. The typical EP modeling (that considers a constant ac-
tivation probability once a local stress threshold is overpassed)
has been seen to correspond to a Hamiltonian model that uses
a cuspy form for the pinning potential. In order to represent
the case of smooth potentials EPMs have to use a “progres-
sive” activation law, as described in [21]. This analogy reflects
qualitatively the way in which a block escapes from a local
solid state and moves to the next one by local fluidization
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FIG. 4. (a) Flow curves at different temperatures for a two-
dimensional EP model of size 2048 × 2048, with renewable
thresholds taken randomly from a distribution and finite duration
plastic events. The barrier coefficient used is α = 2. The continuous
black line corresponds to T = 0. (b) Main plot: scaling (7) using
ψ = 3

4 , α = 2 (compatible with β = ψα = 3
2 ) Inset: scaling (7) but

with an effective value β = 1.42 used instead, keeping α = 2 and
ψ = β/α.

and the typical time it takes to do so [21]. The matching is
further reinforced by the finding that the flow exponent β

is very close to 3
2 both in Hamiltonian models with cuspy

potentials and EPMs with uniform activation, whereas β � 2
is found in Hamiltonian models with smooth potentials and
EPMs with the appropriate progressive activation. Therefore,
we believe that once the kind of barrier has been selected
(equivalently, the type of local yielding rule), both α and
β are simultaneously defined, i.e., they are not independent
exponents in any physically relevant situation.

Recently, Popovic et al. [24] have presented a study of
thermal rounding in elastoplastic models, finding a very good
scaling of the form of Eq. (7). While they have varied
α freely to nicely test the scaling for different kind of thermal
activations, the paper does not discuss on the possible values
of β (and therefore ψ). Furthermore, there is little discussion
about the reasons why the scaling obtained is extremely good,
actually more than expected in other cases of thermal round-
ing of models with non-mean-field scaling [29]. Interestingly,
one could interpret that such a good mean-field-like scaling
is somehow in contrast with previous expectations from the
same group about the yielding exponent β being nonuniversal
and significantly affected by finite-dimensional effects [28].
We think that the excellent performance of the thermal round-
ing scaling (7) is not a fortuitous coincidence, but instead
a consequence of the fact that the yielding transition is ef-
fectively mean field, as we discuss in the next section. As a
matter of fact, one way to test the mean-field-like hypothesis
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FIG. 5. (a) Different temperature flow curves (in log-lin) for a
two-dimensional EP model of size 2048 × 2048, with thresholds
taken randomly from a distribution, renewed after each plastic event,
and instantaneous plastic events. The barrier coefficient used is α =
1.5. The continuous black line corresponds to T = 0. (b) Scaling
(7) using ψ = 1, α = 3

2 (compatible with β = ψα = 3
2 ). (c) Wrong

scaling, using ψ = 3
4 , α = 2 (compatible with β = ψα = 3

2 ).

is to build a system in which we define arbitrarily the kind
of activation barrier under consideration. This may lead to an
equally arbitrary value of ψ . But, as soon as we know that the
characteristics that determines β is preserved, we can expect
the same thermal rounding scaling to hold, with ψ = β/α.

In Fig. 5 we use an “incorrect” value of alpha in the acti-
vation barrier, α = 1.5, while the plastic events still occur at
a fixed rate (as soon as they reach the local threshold). There-
fore, with the β = 3

2 expected for constant rates, the scaling
(7) translates to γ̇ /T vs (σ − σc)/T 2/3. This is what is plotted
in Fig. 5(b). Despite small deviations to scaling away from σc

for the higher temperatures, which are expected, the scaling
behaves quite well. Yet, notice that the scaling exponents that
worked well in Figs. 3 and 4, i.e., γ̇ /T 3/4 vs (σ − σc)/T 1/2,
now completely fail, as is shown in Fig. 5(c). So, even when
we can link β at T = 0 with the type of local yielding rule
(constant or progressive when reaching threshold), if we mix
that rule with a thermal activation governed by α, the scaling
relation is still expected to be Eq. (7) with ψ = β/α. This is
why we believe that the scaling works so well for all α in
Ref. [24], even when β should be similar in all cases, and
therefore ψ should be changing.

In brief, we observe that the thermal rounding of Eq. (7)
works well in elastoplastic models where the possibility of
thermal activation has been introduced in an Arrhenius-type
fashion (∼ exp[−(σYi − σi )α/T ]). While the EPMs results
alone could leave space for interpretation due to the effective
β exponents measured, the analogy with the Hamiltonian
models strongly suggests that, in the background, the thermal
rounding scaling is working with no corrections. This places

the yielding phenomenon, beyond the athermal limit, on the
spot of a mean-field-like or particle-based theoretical inter-
pretation [21,22,50], provided that the nontrivial mechanical
noise is well characterized for each dimension. In the next
section we combine thermal and mechanical noises in such a
one-particle problem.

IV. ONE PARTICLE UNDER MECHANICAL AND
THERMAL NOISE

The finding that our numerical results accurately follow the
scaling of Eq. (7) with fully consistent values of the exponents
provides additional support to a developing idea [21–23,31]:
The yielding transition in finite dimensions can be accurately
described by a mean-field-like model in which a single site
feels the effect of all other sites through a “mechanical noise”
characterized by a stochastic signal with a nontrivial Hurst
exponent H . In Appendix B we review the arguments leading
us to propose this scenario.

In Ref. [31] such a one-particle model, which is nothing but
the Prandtl-Tomlinson model with the addition of stochastic
driving, was analyzed in detail at zero temperature, and it was
shown that the value of the flow exponent β is related to the
value of H by

β =
{

1
H , cuspy potential
1
H + 1

2 , smooth potential
(15)

where the potentials are periodic and equivalent to the onsite
potentials defined for the 2D systems of Sec. II A [Eq. (A9)]:

−dV

dx
=

{
[x] − x, cuspy
sin(2πx), smooth.

(16)

Notice that the choice of periodic potentials was done for
convenience since it allows for more straightforward analytic
approximations, but the use of bounded disordered potentials
keeping the same cuspy or smooth characteristics would yield
identical results. Here we extend this analysis to show that
the addition of an additive thermal noise leads to a good
agreement with the overall form of Eq. (7).

The model that we now simulate consists of a particle with
a single coordinate x, evolving in a potential V (x), driven by
the position variable w(t ) through a spring of constant k0, and
in the presence of a stochastic term that takes into account the
effect of temperature T in the system

dx

dt
= −dV

dx
+ k0[w(t ) − x] +

√
T η0(t ), (17)

where η0 is taken as an uncorrelated Gaussian variable such
that 〈η0(t )η0(t ′)〉 = 2δ(t − t ′). Hence, if w is fixed, the system
spontaneously relaxes to the Boltzmann equilibrium distribu-
tion in the potential V (x) + k0(w − x)2/2.

The dynamics of the variable w(t ) has a smooth part, that
mimics the uniform external driving, and a stochastic term that
represents the existence of mechanical noise in the system,

dw

dt
= bγ̇ + aγ̇ HηH (t ). (18)

The mechanical noise term is characterized by the Hurst ex-
ponent H . To implement it, we sample a random variable with
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FIG. 6. (a) Flow-stress curves for one particle in a cuspy periodic
potential composed by concatenated parabolic wells, stochastically
driven with mechanical noise of H = 2

3 at different temperatures.
(b) Master curve [Eq. (7)] using the exponents corresponding to the
ω = 1 case, ψ = 3

4 , and 1/α = 1
2 from Eq. (23), and σc = 0.5862.

a heavy tailed probability distribution

P(ηH ) ∼ 1

|ηH | 1
H +1

, for large |ηH |. (19)

In practice, we sample it as

ηH =
(

1

RH + ε
− 1

)
S, (20)

where R is a flat random variable between 0 and 1, S = ±1
is a binary random variable satisfying 〈St St ′ 〉 = δ(t − t ′) and
〈Rt Rt ′ 〉 = δ(t − t ′)/3, and 〈St Rt ′ 〉 = 0. Hence, ηH is also time
decorrelated. It is easy to see that this sampling generates
Eq. (19) with a large-ηH cutoff controlled by ε.

It can be analytically shown (see Appendix C) that for
low enough temperatures, and sufficiently close to the critical
stress σc, the flow curves at different temperatures for this
one-particle problem can be cast in the scaled form given by
Eq. (7), with the values of the scaling exponents

ψ = ω − H + ωH

(ω + 1)H
, (21)

α = 1 + 1

ω
, (22)

β = ψα = 1

H
− 1

ω
+ 1. (23)

Here ω is related to the form of the potential V (x) in Eq. (17)
right at the transition point between successive wells: ω = 1
for the cuspy and ω = 2 for the smooth potentials defined in
Eq. (16) (see Appendix C for a realization of V with a generic
ω and its thermal rounding scaling). It is worth noting from
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FIG. 7. (a) Flow-stress curves for one particle in a sinusoidal
potential, stochastically driven with mechanical noise of H = 2

3 at
different temperatures. (a) Master curve [Eq. (7)] using the exponents
corresponding to the ω = 2 case, ψ = 4

3 , and 1/α = 2
3 from Eq. (23).

σc = 0.319.

Eq. (23) that the exponents predicted are universal, in the
sense that they do not depend on the particular shape of V (x)
but only on its normal form near the local yielding thresholds.

To confirm these results, we have numerically solved the
stochastic system of Eqs. (17) and (18) for different values
of T and γ̇ > 0 in order to obtain the flow-stress (γ̇ vs σ )
curves near the yielding transition, with the stress σ given by
the steady-state average

σ (γ̇ ) ≡ k0[w(t ) − x(t )]. (24)

Without loss of generality, in simulations we used the val-
ues k0 = 0.2 or 0.5. These values satisfy the condition k0 <

maxx[−V ′′(x)] for the cuspy and smooth potentials, thus
granting σ (γ̇ → 0) = σc > 0. We set ε small enough so to
ensure that scaling exponents are independent of k0 and ε

[31]. Also, we choose here H to be H = 2
3 , which is the

value that generates β = 3
2 and 2 for cuspy and smooth

potentials, respectively, at T = 0, therefore recovering the
numerical values of exponents observed in spatially extended
two-dimensional systems in previous sections. Yet, the whole
numerical analysis of the one-particle model will sustain for
any value of H , as is proven in Appendix C.

Figures 6 and 7 show numerical data for the flow curves
obtained from our one-particle model with cuspy (ω = 1) and
smooth (ω = 2) potentials, respectively [Eq. (16)]. As H =
2
3 has been used for the simulations, they show a very good
qualitative agreement with the results found for the full 2D
system. In particular, Figs. 6(b) and 7(b) show a very good
scaling collapse when using the expected values α = 2 and
β = 3

2 (and then ψ = β/α = 3
4 ) for the ω = 1 cuspy case, and
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FIG. 8. Simulation results for σ as a function of T at different γ̇

levels for the data corresponding to Fig. 2. The red dashed lines cor-
respond to the prediction of Eqs. (25) and (26) with α = 3

2 , ψ = 4
3 ,

σc = 0.6535, C0 = 0.44, C = 1.70, C′ = 27.47 [notice that this pre-
diction cannot be extended at temperatures lower than ∼(γ̇ /C′)1/ψ ].
The gray full lines correspond to the expression (27) with α = 3

2 ,
ψ = 4

3 , σc = 0.6535, C = 0.45, C′ = 1.41, κ = 0.375.

α = 3
2 , β = 2 (and then ψ = β/α = 4

3 ) for the ω = 2 smooth
case.

V. INTERPOLATION BETWEEN ACTIVATED AND
ATHERMAL FLOW CURVES: GENERALIZING THE

JOHNSON AND SAMWER’S LAW

If in Eq. (8) we set γ̇ = γ̇0, where γ̇0 is such that strain
rates below it are experimentally undetectable, then Eq. (8)
can be considered to be a restating of the JS result, Eq. (1).
In other words, the empirical finite-temperature yield stress
τcT appearing in Eq. (1) can be identified with the stress
evaluated at the threshold strain rate τcT ≈ σ (γ̇0, T ) < σc.7

More generally, we can propose an interpolation scheme be-
tween the exponentially activated regime at σ < σc and the
zero-temperature limiting behavior for σ > σc by generaliz-
ing Eq. (8) to a form similar to Eq. (2), namely,

σ (γ̇ , T ) = σ (γ̇ , T = 0) −
[

T

C
ln

(
C′T ψ

γ̇

)]1/α

, (25)

where σ (γ̇ , T = 0) is expected to behave as

σ (γ̇ , T = 0) = σc + C0γ̇
1/β . (26)

In addition to reducing to the standard flow curve at T = 0
and to the exponential activation formula when T � γ̇ 1/ψ ,
the combination of Eqs. (25) and (26) is fully compatible with
the general thermally activated behavior [Eq. (7)]. It is inter-
esting to check our numerical data against expression (25).
For the sake of concreteness we only show the results for the
Hamiltonian model in the case of smooth potentials. Using the
same parameters that were used to construct Fig. 2, we obtain
the red dashed curves shown in Fig. 8 (notice the analogy with
Fig. 2 in [8]). We see that the fitting to the numerical values

7Notice that from this viewpoint, it is therefore clear that the JS
scaling corresponds to the thermally activated regime σ < σc.

provided by expression (25) (adjusting constants C0, C, and
C′ and using the appropriate exponents for this case, namely,
α = 3

2 and β = 2) is in fact very good if the temperature is not
too small. However, in this limit Eq. (25) cannot be correct as
the argument of the logarithm becomes negative. A full-range
approximate interpolation scheme can be easily obtained by
transforming (25) to

σ (γ̇ , T ) = σ (γ̇ , T = 0) −
{

T

C
ln

[
C′

(
T ψ

γ̇

)κ

+ 1

]}1/α

.

(27)

This regularization of the logarithm is similar to the one
that is known to work very well in the Prandtl-Tomlinson
model [51], and provides a much better fitting at low T to
the data in Fig. 8, as indicated by the gray full lines. The
interpolation scheme of Eq. (27) suggests to plot the values
of y ≡ [σ (γ̇ , T = 0) − σ (γ̇ , T )]/T 1/α vs x ≡ γ̇ /T ψ for the
one-particle and the fully extended models to compare in
detail the effect of temperature in both cases. In fact, this plot
is of the form

y =
[

1

C
ln

(
C′

xκ
+ 1

)]1/α

(28)

and must lie on a single master curve if the thermal rounding
scaling is satisfied. Results are presented in Fig. 9 for Prandtl-
Tomlinson, Hamiltonian, and elastoplastic models. We see
that the data remarkably collapse on a single master curve as
temperature is reduced,8 and also that in the three cases this
curve is accurately fitted by and expression of the form (28).
The log-two-thirds behavior (for α = 3

2 ) of this expression is
the one expected based on the interpolation formula (25). The
power of x and the +1 added term inside the logarithm give
a much better crossover to the power-law decay as x → ∞.
In any case, the remarkable result is that the same kind of
analytical expression provides a very good fitting of the results
for the one-particle model and for the fully extended models.

VI. SUMMARY AND DISCUSSION

We have addressed the problem of the thermal rounding
of the yielding transition of amorphous materials in a com-
prehensive theoretical framework, both including different
modeling approaches and analytical arguments and targeting
the interpretation of important phenomenological laws based
on experimental data from a new perspective. In particular,
we have considered two different numerical approaches con-
sisting in spatially extended models that describe stress and
strain in the system at a coarse-grained level, where the elas-
tic interaction at finite distance is incorporated through the
use of the Eshelby quadrupolar kernel. In one case, coined
“Hamiltonian,” the full dynamics has the form of an over-
damped equation of motion for the local strain. In this case,
temperature is included in a standard way through the addition

8In order to be able to subtract curves at fixed γ̇ , the values
σ (γ̇ , T = 0) are taken from the analytical fit of the sparse data
obtained at arbitrary fixed stress values. This explains the deviation
from the master curve of the points of larger temperatures when
[σ (γ̇ , T = 0) − σ (γ̇ , T )]/T 1/α approaches zero.
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FIG. 9. Plot of [σ (γ̇ , T = 0) − σ (γ̇ , T )]/T 1/α vs γ̇ /T ψ , for
(a) the one-particle model and (b) the extended Hamiltonian model
(system size 256 × 256), with smooth potentials (ψ = 4

3 ), and for
(c) the EP model with instantaneous events (system size 2048 ×
2048), for which ψ = 3

4 . Different temperatures are included and fall
into the same master curve. In all cases the points are fitted by an
expression of the form y = [C−1 log(C′/xκ + 1)]1/α . (One particle:
α = 3

2 , κ = 0.4, C = 0.18, C′ = 4.5; Hamiltonian: α = 3
2 , κ = 0.5,

C = 0.61, C′ = 2; EPM: α = 2, κ = 1.1, C = 2.25, C′ = 0.08).

of a Langevin stochastic term to the equations of motion.
The second case corresponds to the purely phenomenologi-
cal approach of elastoplastic models, where the elastoplastic
blocks of the system switch between solid and fluidized states
according to local rules that take into account their mechanical
stability. In this case we include temperature as an Arrhenius-
type activation allowing one block to fluidize even when its
stress is lower than the local yielding threshold.

Our first main result has been to extend the compatibil-
ity between these modeling approaches to the case of finite
temperatures. Previous works [21,23] indicated that at T = 0
both approaches display the same qualitative behavior at both
quasistatic and finite strain-rate deformations. In particular,
at T = 0, irrespective of the model particularities and close
to the critical stress σc, all flow curves group in only one
of two families [21,23]: the one corresponding to “cuspy”
disordered potentials (equivalently uniform yielding rates in
EPMs) with β = 3

2 or the one corresponding to “smooth”
disordered potentials (equivalently progressive yielding rates
in EPMs) with β = 2. For finite temperatures γ̇ is different
from zero even below σc displaying an exponential activation
of the form

γ̇ ∼ exp[−C(σc − σ )α/T ] (σ < σc). (29)

The value of α encodes details of the quenched stochastic
potential in the Hamiltonian case, or the activation rates as
a function of stress in the EPMs. The expected α value cor-
responding to the most realistic case of a smooth quenched
potential (in Hamiltonian modeling) is α = 3

2 , and is the one
that should be expected in molecular dynamics simulations
and experiments.

The second main result of our work is the observation that
the flow curves, in a finite interval around σc, and for finite
temperatures (at least when T is not “too large”) are very
well described by the thermal rounding scaling of Eq. (7).
This scaling extends the exponentially activated regime for
σ < σc to a full interval around σc. In fact, we conclude that
the Johnson and Samwer’s relation (1) can be derived from
Eq. (7) and recovered with all the numerical approaches we
have implemented. The connection of the thermal rounding
scaling proved in this work with the phenomenological results
gathered in [8] suggests that our conclusions, aside from a
pure theoretical interest, could be relevant to the study of
thermal rounding in amorphous materials where temperature
plays an important role, for example, in colloidal glasses
and suspension [12,52,53], small droplet-size emulsions [54],
microgel pastes [55], colloidal gels [56], among others [1,2].
This is, aside from “intrinsic” temperature dependencies re-
sulting in nonuniversal materials particularities (e.g., the yield
stress value itself [57–59]), the thermal rounding scaling could
be expected whenever the temperature presumably sets in also
to activate plastic events in a range of slow-driving rates.

The thermal rounding scaling of Eq. (7) is predicted from
models that assume a well-defined temperature T entering
either through a Langevin noise or through Arrhenius ac-
tivation at the corresponding coarse-grained level for each
case. In the case of amorphous materials with mesoscopic
constituents (colloidal glasses and gels, emulsions, foams),
whether such T should correspond to the bath temperature
or a thermodynamically well-defined effective temperature of
the material [60,61] (that incorporate nonequilibrium fluctua-
tions) remains an open and interesting question. Nonetheless,
the agreement of our model predictions with the Johnson and
Samwer’s phenomenological scaling strongly suggests that, at
least for metallic glasses, the putative effective temperature
T must be equal or proportional to the experimentally mea-
sured temperature.
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We have also shown that the thermal rounding scaling is
analytically satisfied in the case of a single particle driven on a
disorder quenched potential, under the action of a mechanical
and a thermal noise. This concomitance between the thermal
rounding behavior of the one-particle model and that of the
full extended model, which extends also to the detail of the
analytical form of the full σ (γ̇ , T ) curve, reinforces our view
that the spatially distributed simulation outcomes admit a very
accurate description in terms of a one-particle system. In the
end, this is an additional indication that the yielding transition
of amorphous materials in finite dimensions, at least up to the
point in which it is captured by the present kind of models,
can be described effectively as a mean-field transition.
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APPENDIX A: MODEL DESCRIPTION

1. Hamiltonian model

The Hamiltonian description of the yielding transition and
plastic behavior has been already presented in [23,45,47]. We
provide here a short description for completeness. It considers
the symmetric, linearized elastic strain tensor of the material
εi j (r) at different positions r in the sample. It assumes a
relaxational dynamics that tends to minimize the free energy
of the system, in the form

η
∂εi j

∂t
= −δF (r)

δεi j
+ �i jεi j + σi j . (A1)

Here, F ≡ ∫
dd r f (εi j ) is the total free energy, obtained by

spatial integration of a free-energy density f . Note that f is
local in εi j . �i j are Lagrange multipliers that are necessary
to fulfill internal constraints among the εi j , usually referred
to as Saint-Venant compatibility conditions [45,47]. The σi j

are externally applied stresses with different symmetries. In
the form given by (A1), this is already a model that can be
applied to concrete calculations in a fully tensorial framework,
once the form of f (εi j ) is defined [46]. However, in the case
in which the externally applied stress is homogeneous and
of definite symmetry, a further approximate transformation
can be proposed, as follows. If, for simplicity, we call σ the
applied external stress, and e the corresponding component
of the strain field, we can (under certain conditions [46])
integrate out the remaining components of the εi j tensor, and
arrive at a scalar model for e(r). Switching now to a notation
in which the latin indices label spatial positions in the sample,
this scalar model reads as (we take η = 1 from now on)

∂ei

∂t
= −δF (e)

δei
+

∑
j

Gi je j + σ. (A2)

Note that the original compatibility conditions have trans-
formed in the nonlocal interaction term mediated by the kernel
Gi j . The detailed derivation shows that Gi j is nothing but the

Eshelby interaction also used in EPM’s (see next section). All
that remains to define our model is to specify the form of the
free energy F . First of all, notice that F is a sum of local term
over different parts of the sample, i.e.,

F (e) =
∑

i

Vi(ei ). (A3)

Since we are interested in modeling an amorphous, disor-
dered material Vi(ei ) will be chosen in such a way that it
describes the local thresholding behavior of a small piece
of the amorphous material under deformation. The functions
Vi have minima at different values of e representing local
equilibrium states. The functions Vi are stochastically defined,
in an uncorrelated manner for each site i:

deq

dt
= −

∑
i

V ′
i (ei )|q + Gqeq. (A4)

Gq=0 is taken as zero in a stress-conserved dynamics. The
uniform mode in Eq. (A2) is thus directly found from

γ̇ ≡ dei

dt
= −V ′

i (ei ) + σ (A5)

that defines the global strain rate γ̇ . Finally, the last remaining
point is related to the incorporation of temperature. In the
present model, there is a simple and natural way to incorporate
temperature, namely, in the form of a stochastic (Langevin)
force, added to the right of Eq. (A2), that finally reads as

∂ei

∂t
= −dVi

dei
+

∑
j

Gi je j + σ +
√

T ξi(t ) (A6)

with the stochastic term ξ (t ) satisfying

〈ξi(t )〉 = 0, (A7)

〈ξi(t )ξ j (t
′)〉 = 2δ(t − t ′)δi j . (A8)

We numerically simulate Eq. (A6) for two particular onsite
periodic potentials referred to as “cuspy” and “smooth” po-
tentials. They are constructed as a concatenation of parabolic
(cuspy) or sinusoidal (smooth) pieces, in consecutive intervals
of the e axis. Each interval is characterized by its left and
right border, el , er , in such a way that the force derived
from the potential in a particular interval is given in terms of
e0 ≡ (el + er )/2 and � ≡ (er − el ) by

−dV

de
=

{
e0 − e, cuspy potential
�
2π

sin(2π (e0 − e)/�), smooth potential.

(A9)

The value of � for each interval is taken from a flat distribu-
tion within the interval [1,2]. It is clear from its definition that
the cuspy (smooth) potential has a discontinuous (continuous)
force between consecutive intervals of definition.

We integrate the equation of motion using a first-order
Euler method with a temporal time step δt = 0.1. All results
presented correspond to square samples with periodic bound-
ary conditions. The flow curve is determined starting from the
largest values of σ , and progressively reducing it, while the
strain rate is calculated from Eq. (A5). In this way we get rid
of issues associated to sample preparation that would appear
if the smallest σ values were simulated first.
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2. Elastoplastic model

When referring to elastoplastic models (EPMs), we con-
sider amorphous materials at a coarse-grained level descrip-
tion, lying in-between the particle-based simulations and the
continuum-level description. Full background, context, and
historical development of EPMs can be found in [2]. The
amorphous solid is represented by a coarse-grained scalar
stress field σ (r, t ), at spatial position r and time t , under an
externally applied shear strain. Space is discretized in blocks.
At a given time, each block can be “inactive” or “active” (i.e.,
yielding). This state is defined by the value of an additional
variable: n(r, t ) = 0 (inactive) or n(r, t ) = 1 (active).

We define our EPM in two dimensions discretized on a
square lattice, and each block σi subject to the following
evolution in real space:

∂σi(t )

∂t
= μγ̇ ext +

∑
j

Gi jn j (t )
σ j (t )

τ
, (A10)

where γ̇ ext is the externally applied strain rate, and the kernel
Gi j is the Eshelby stress propagator [48].

It is convenient to explicitly separate the i = j term in the
previous sum as

∂σi(t )

∂t
= μγ̇ ext − g0ni(t )

σi(t )

τ
+

∑
j 
=i

Gi jn j (t )
σ j (t )

τ
,

(A11)

where g0 ≡ −Gii > 0 (no sum) sets the local stress dissipation
rate for an active site. The form of G is G(r, r′) ≡ G(r, ϕ) ∼

1
πr2 cos(4ϕ) in polar coordinates, where ϕ ≡ arccos[(r − r′) ·
rγ̇ (ext) ] and r ≡ |r − r′|. For our simulations we obtain Gi j

from the values of the propagator in Fourier space Gq, defined
as

Gq = − 4q2
x q2

y

(q2
x + q2

y )2
(A12)

for q 
= 0 and

Gq=0 = −κ (A13)

with κ a numerical constant set to 1.
The elastic (e.g., shear) modulus μ = 1 defines the stress

unit, and the mechanical relaxation time τ = 1, the time unit
of the problem. The last term of (A11) constitutes a mechan-
ical noise acting on σi due to the instantaneous integrated
plastic activity over all other blocks ( j 
= i) in the system.
The picture is completed by a dynamical law for the local
state variable ni = {0, 1}. Here is where the thermal activa-
tion for T > 0 steps in. In the athermal case, when the local
stress overcomes a local yield stress, a plastic event occurs
(the block becomes “active”) with a given probability, usually
constant (see [21] for different alternatives). But when T > 0
we also expect activation to occur with a finite probability
even when σi < σYi. The block ceases to be active when a
prescribed criterion is met. When the plastic event has a finite
duration, a local memory is coded in the system configuration,
defining a dynamics that is typically non-Markovian. In this
work we have used the following rules for site activation and

deactivation:

ni :

⎧⎪⎪⎨⎪⎪⎩
0 → 1 instantaneously if σi � σY,

0 → 1 with probability per unit time
exp[−(σYi − σi )α/T ] if σi < σY,

0 ← 1 at a rate τ−1
off,

(A14)

where α and τoff are parameters and the σYi variables are ran-
domly sorted after each local yield event to be 1 + 0.1rexpt,
with rexpt a random number taken from an exponential dis-
tribution of average unity. The case of instantaneous stress
release corresponds to τoff → 0, otherwise we have set τoff =
1. As discussed in [21], the case of EPMs with uniform local
yield rates (i.e., constant, as in this case) can be directly related
to the case of cuspy potentials in the Hamiltonian model.
The β exponent of the athermal flow curve results identical
in both approaches. We then believe that the choice of the
parameter α in the thermal activation rule is not arbitrary but
should respect the same analogy among model approaches.
Therefore, here we use α = 2 which is the barrier exponent in
a parabolic potential. On the other hand, the case of smooth
potentials in the Hamiltionian approach is analogous to the
case of progressive local yield rates [21] in EPMs. In that
case the block activation is stochastic by definition. We have
avoided here to combine the stochasticity of both progressive
rates [e.g., τon ∼ (σi − σ

y
i )−1/2] and thermal activation, and

choose to show only the uniform rate case for simplicity. But,
such a combination is possible to do and in that case we would
use α = 3

2 as the barrier exponent for the thermal activation
in (A14).

APPENDIX B: “ONE-PARTICLE” DESCRIPTION

We have emphasized in different parts of the text (and also
in previous publications [21–23,50]) that the yielding prob-
lem admits a “one-particle” or “single degree-of-freedom”
description that resembles in some aspects the typical “mean-
field” approach, so common in many problems. However,
there are also important particularities, and we want to clarify
here what is the meaning we give to the expression “mean
field” in the context of this problem.

We start by reintroducing some ideas already presented in
[23] (Sec. IV). For concreteness, we will analyze the case of
the Hamiltonian model, as generically presented in Eq. (A2).
Notice that, since Gi j represents an interaction between sites i
and j that globally have to satisfy action-reaction equivalence,
we have ∑

j

Gi j = G(ii) +
∑
j 
=i

Gi j = 0. (B1)

Thus, separating the j = i term and calling G(ii) = −k (where
k > 0, since −k = ∑

q Gq, and Gq � 0), we obtain

∂ei

∂t
= −δF (e)

δei
− kei +

∑
j 
=i

Gi je j + σ. (B2)

Now we separate Gi j in its average value plus its zero-average
fluctuation part that we call G̃i j . Using (B1) and e j = γ̇ t , we
obtain

∂ei

∂t
= −δF (e)

δei
+ k(γ̇ t − ei ) +

∑
j 
=i

G̃i je j + σ. (B3)
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We also define the uniform driving w(t ) as w(t ) ≡ γ̇ t + σ/k.
Therefore,

∂ei

∂t
= −δF (e)

δei
+ k[w(t ) − ei] +

∑
j 
=i

G̃i je j . (B4)

This is our starting point for the “mean-field” argument.
Equation (B4) represents the evolution of the variable ei under
the influence of all other variables e j and the external driving.
For a reference point, we can compare with an Ising model
where the spin si at a given site i evolves under the influence of
all other spins s j . If interactions decay sufficiently slowly with
distance (more precisely, when interactions decay no faster
than r−d , with d the system dimension), the coupling term
will have some average value and fluctuations that will be
negligible in the thermodynamic limit. This is in general what
allows to propose a mean-field solution. Now, in our case the
situation is subtler because the spatial average of G̃i j is zero
by construction, therefore, all that remains is the fluctuating
part. Still, the spatial decay of the G interaction is ∼1/rd and
that is sufficient to consider it a long-range interaction. What
this means is that, for sufficiently large systems, any particular
e j in the last term of Eq. (B4) has a negligible contribution to
the total sum. In turn, one could argue that the back effect
of ei on any of the variables e j , and therefore on the sum
in the last term in Eq. (B4), will also be negligible. So, one
concludes that this term can be considered to be given when
discussing the dynamics of ei. In other words,

∑
j 
=i G̃i je j can

be considered as an external stochastic noise that affects the
dynamics of ei (notice that the independent variable of this
noise is not t but the strain variable γ̇ t). The properties of a
noise of such type are characterized by an overall amplitude
and a correlation parameter H . We can justify the existence
of these two parameters but we cannot make a quantitative
prediction about their values without considering the full
N-particle problem and its dimension. Yet, given a value of
H we can work out its consequences on the dynamics of ei.
In particular, we can obtain the values of exponent β (that
characterizes the flow curve) and ψ (that defines the thermal
rounding behavior). In Refs. [21,23] some of us have actually
measured the noise that a particular site i senses from all other
sites in a 2D system, and in fact we obtained noise signals
that are characterized by a precise value of H . Satisfyingly,
that value of H coincides with the one required to justify the
measured values of β and ψ according to the analytical ex-
pressions obtained in the analysis of the stochastically driven
PT model (see [31] and Sec. IV).

We would like to conclude this Appendix by noticing that
the long-range nature of the Eshelby elastic response, in ad-
dition to justifying the one-particle treatment in the way we
have just explained, allows to clarify a point that otherwise
would be paradoxical: the fact that for some critical expo-
nents (in particular for the flow exponent β) different values
are obtained when working with cuspy or smooth potentials.
This point seems at first glance difficult to rationalize be-
cause in equilibrium phase transitions it is usually stated that
“critical exponents do not depend on microscopic details of
the model.” Yet, beyond the frequently fruitful analogy with
equilibrium phase transitions, we know rigorously, at least
for a paradigmatic driven transition as the depinning one,

that there are subtleties. In the depinning problem the same
intriguing dependence of the flow-curve exponent with the
disordered potential is found when the elastic interactions
decay slow enough. The “duality” of β in fully coupled mod-
els is discussed and proved by Fisher [33] and Kardar [62].
Narayan and Fisher [63] showed that for internal dimensions
d < dc (where dc = 2σ depends on the range of the elastic
interaction kernel G ∼ 1/rd+σ ), the critical exponent β for
elastic manifolds is universal, i.e., it is the same for cuspy or
smooth microscopic potentials. However, when d � dc, the β

exponent is different for smooth and cuspy potentials. Coming
back to the yielding transition, the Eshelby kernel corre-
sponds to an interaction that decays slow enough, as ∼1/rd

(corresponding to σ = 0 in every dimension). Despite the
caveats of anisotropy and alternating signs of the interaction,
that imposes the distinct “dynamical” mean-field description
presented here, the same phenomenology is observed with
respect to the change of exponents according to the potential
kind. Yielding (in finite dimensions) has different β exponents
for the cuspy and smooth microscopic potentials [21–23]. We
can thus argue that, due to the long-range elastic interactions
implied by the Eshelby interaction, the cuspy or smooth na-
ture of the microscopic disorder is no further a minor detail.
Instead, it becomes a relevant microscopic detail, as it occurs
for fully coupled depinning.

APPENDIX C: SCALING FOR A SINGLE PARTICLE
IN A POTENTIAL

In this Appendix we derive the scaling form of the flow
curve for a single particle stochastically driven in a potential
in the presence of thermal noise. The stochastic driving is
composed of a fixed strain rate, or velocity, plus a mechanical
noise characterized by a Hurst exponent H . The derivation
generalizes the one of Ref. [31] to the case of finite tempera-
tures. The x variable of the system (particle position) follows
Eqs. (17) and (18), that we repeat here for convenience

dx

dt
= −dV

dx
+ k0[w(t ) − x] +

√
T η0(t ), (C1)

dw

dt
= bγ̇ + aγ̇ HηH (t ). (C2)

The system is driven imposing a constant value of γ̇ . At a
given time t , ηH is a random variable sorted as described
in Eq. (20). The stress σ at any moment is defined as σ ≡
k0[w(t ) − x(t )], where k0 is a model parameter.

If T = 0 and k0 < maxx[−V ′′(x)] there is a finite critical
stress value σc when γ̇ tends to zero. In a general case,
for small values of T and γ̇ , σ will be close to σc (i.e.,
|σ − σc|/σc � 1). We want to find a scaling relation between
T , γ̇ , and σ − σc close to the critical point in which all these
three variables are vanishing. The idea of the calculation is as
follows. Consider the evolution of the variable x as a function
of γ̇ t at T = 0, a = 0, and for a vanishingly small γ̇ , as
depicted in Fig. 10. As the particle advances in the potential
V (x), “jumps” in x occur at the transition points between local
basins [black line for x(t ) in Fig. 10]. The value of the stress
is proportional to the average of w(t ) − x(t ), and in the case
of T = 0 and vanishing γ̇ will be σc.
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FIG. 10. Schematic representation of the dynamics of the
Prandtl-Tomlinson model at T = 0 and a = 0. On the left, a periodic
potential V (x) constructed by a concatenation of parabolas, with a
particle moving on it, is depicted with a 90◦ rotation for visualization.
On the right, the driving w(t ) and particle position x(t ) are shown
for γ̇ → 0 (black) and γ̇ > 0 (red). The value of σ is obtained as
the average of k0(w(t ) − x(t )). This value is larger when γ̇ > 0 than
when γ̇ → 0.

For finite but small T and γ̇ , the evolution of x will be
close but not exactly equal to the previous case. The average of
w(t ) − x(t ) will be different, in particular due to the finite γ̇ ,
but also due to a finite temperature. The main effect on σ can
be understood due to a shift in the transition point from one
basin to the next one. Now, it is not necessarily true that x will
jump exactly when reaching the cusp edge (or the maximum
derivative for a smooth potential). We encode this time shift in
a variable τ (see Fig. 10). The change in stress δσ ≡ σ − σc

can be estimated as the fraction of time that τ represents of
the total time needed to traverse a basin (a period of the po-
tential). Being the latter (bγ̇ )−1, we find δσ ∼ τbγ̇ . The fol-
lowing step to quantify the change in σ is to obtain the
scaling behavior of τ from Eqs. (C1) and (C2). Taking into
account the importance of the transition points, we first rewrite
Eq. (C1) close to these points using −dV (x)/dx � Axω as

dx

dt
= A|x|ω + k0w(t ) +

√
T η0(t ). (C3)

Note that ω = 1 describes the situation of a potential formed
by consecutive parabolic pieces, while ω = 2 corresponds to
smooth potential. The value of τ that we search for must be
expressible in term of the parameters appearing in Eqs. (C2)
and (C3). These parameters are A, a, b, γ̇ , and T . From
these four parameters, three (and nonredundantly only three)
quantities with time dimensions can be constructed. They can
be taken to be

t1 ≡ a
1−ω

ω(1−H ) b
(ω−1)H
ω(1−H ) A− 1

ω , (C4)

t2 ≡ a
2−3ω

ω(1−H ) b
2Hω−2H+ω

ω(1−H ) A− 2
ω γ̇ , (C5)

t3 ≡ T
1
3 b

2
3 γ̇ − 2

3 . (C6)
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FIG. 11. (a) Flow-stress curves for one particle in a periodic
potential, with mechanical noise of H = 2

3 at different temperatures.
(b) Master curve [Eq. (7)] using the exponents corresponding to to
the ω = 3

2 case, ψ = 1
1 10, and 1/α = 3

5 from Eq. (23), and σc =
0.34.

On dimensional grounds, the value of τ can be expressed in
general in the form

τ = t1F (t2/t1, t3/t1), (C7)

where F is an unknown function. From here we can write

δσ = γ̇ bt1F (t2/t1, t3/t1). (C8)

One more condition can be used to specify this expression.
For small values of γ̇ , the ∼γ̇ H in Eq. (C2) must dominate
over the ∼γ̇ term. In other words, this means that in the final
expression for δσ the dependence on b has to drop out, it has
no relevance. This allows to eliminate one of the dimension-
less variables in Eq. (C8). After some algebra we can finally
write the dependence of δσ on γ̇ and T as

δσ = σ − σc = γ̇
ωH

ωH+ω−H f

(
γ̇

(ω+1)H
ωH+ω−H

T

)
(C9)

which can be inverted, and put in the more standard form

γ̇ = T ψG
(
(σ − σc)/T 1/α

)
(C10)

with

ψ = ωH + ω − H

(ω + 1)H
, (C11)

α = 1 + 1

ω
. (C12)

The latter is nothing but the expression used in Eq. (7).
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For T → 0, the T dependence in Eq. (C10) must drop out,
and we get

γ̇ = (σ − σc)β (C13)

with

β = ψα = 1 + 1

H
− 1

ω
. (C14)

In Figs. 6 and 7 we have checked these predictions for the
cases ω = 1 and 2. In order to test the scaling more generally,

for different values of ω we can use [36]

−V ′(x) = [1 − cos(2πx)]ω/2

2ω/2�(ω/2+ 1
2 )√

π�(ω/2+1)

− 1, (C15)

which behaves as −V ′(x) ∼ A|x|ω near the transition point
x = 0, with σc = 1. In Fig. 11 we show that our scaling
prediction for ω = 3

2 ]Eqs. (C10)–(C12)], intermediate value
between those corresponding to the standard ω = 1 and 2
cases, is well satisfied by the data numerically generated from
Eqs. (C1), (C2), and (C15).
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