
Annual Review of Condensed Matter Physics

Creep Motion of Elastic
Interfaces Driven in a
Disordered Landscape
Ezequiel E. Ferrero,1 Laura Foini,2 Thierry Giamarchi,3

Alejandro B. Kolton,4 and Alberto Rosso5
1Instituto de Nanociencia y Nanotecnología, Centro Atómico Bariloche, CNEA–CONICET,
R8402AGP San Carlos de Bariloche, Río Negro, Argentina
2IPhT, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
3Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva, Switzerland
4Instituto Balseiro, Centro Atómico Bariloche, CNEA–CONICET–UNCUYO, R8402AGP San
Carlos de Bariloche, Río Negro, Argentina
5LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France;
email: alberto.rosso@u-psud.fr

Annu. Rev. Condens. Matter Phys. 2021. 12:111–34

The Annual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

https://doi.org/10.1146/annurev-conmatphys-
031119-050725

Copyright © 2021 by Annual Reviews.
All rights reserved

Keywords

domain walls, depinning, disordered elastic systems, avalanches, activated
motion

Abstract

The thermally activated creepmotion of an elastic interface weakly driven on
a disordered landscape is one of the best examples of glassy universal dynam-
ics. Its understanding has evolved over the past 30 years thanks to a fruitful
interplay among elegant scaling arguments, sophisticated analytical calcu-
lations, efficient optimization algorithms, and creative experiments. In this
article, starting from the pioneer arguments, we review the main theoreti-
cal and experimental results that lead to the current physical picture of the
creep regime. In particular, we discuss recent works unveiling the collective
nature of such ultraslow motion in terms of elementary activated events.We
show that these events control the mean velocity of the interface and cluster
into “creep avalanches” statistically similar to the deterministic avalanches
observed at the depinning critical threshold. The associated spatiotemporal
patterns of activated events have been recently observed in experiments with
magnetic domain walls. The emergent physical picture is expected to be rel-
evant for a large family of disordered systems presenting thermally activated
dynamics.
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1. INTRODUCTION

Our understanding of physics is largely based on idealized problems, the famous “spherical cows.”
Yet, the beauty of nature makes use of vast complexity. It is well known nowadays that the presence
of impurities and defects messing up those rounded mammals leads to new emerging physical be-
havior that is not observed in the idealized disorder-free problems. For example, the equilibration
time of glasses becomes so large that the result is experimentally inaccessible. Such systems avoid
crystallization and basically live forever out of equilibrium (1, 2). Dirty metals display localiza-
tion and metal insulator transitions, which is unseen in perfect crystals (3, 4). Systems of a broadly
diverse nature show intermittent dynamics induced by the presence of disorder (5). Strained amor-
phous materials (6–8), fracture fronts (9–11), magnetic (12, 13) and ferroelectric domain walls (14,
15), and liquid contacts lines (16, 17) all share a common phenomenology:When the applied drive
is just enough to induce motion, most of the system remains pinned but large regions move col-
lectively at high velocity. These reorganizations are called avalanches. Their location is typically
unpredictable, and their size distributions display scale-free statistics. Given the ubiquity of this
stick–slip behavior, the study of avalanches has occupied a central scene in nonequilibrium statis-
tical physics, as can be seen in the large literature of sandpile models (18), directed percolation,
and cellular automata (19).

The depinning of an elastic interface moving in a disordered medium (20–25) is one of the
paradigmatic examples in which avalanches are well understood, thanks to the analogy with stan-
dard equilibrium-critical phenomena (22, 26). When the interface is driven at the force, f, two
phases are generically observed: For f< fc, the interface is pinned at zero temperature and motion
is observed only during a transient time; for f > fc, the line moves with a finite steady velocity.
At fc, the system displays a dynamical phase transition and the diverging size of avalanches is the
outcome of the presence of critical correlations. Below and above fc, the avalanches display a finite
cutoff that diverges approaching fc. We presently know the statistics of avalanche sizes (27) and
durations (28) and their characteristic shape (29, 30). An important observation is that subsequent
depinning avalanches are uncorrelated in space and time at variance with the avalanche behav-
ior observed in many systems in which a main shock is at the origin of a cascade of aftershocks.
The so-called Omori law and productivity law, central in the geophysics of earthquakes (31), are
not present at the depinning transition.1 Namely all the experimental observations of depinning
avalanches temporally correlated were shown to be related to a finite detection threshold, created
by the limited sensitivity of the measurement apparatus (34).

Nonetheless, genuine aftershocks could be experimentally observed far from the depinning
transition in the so-called creep regime. This regime, which describes the motion of magnetic
domain walls at finite (e.g., room) temperature and low applied fields, corresponds to an interface
pulled by a small force (f� fc) at finite temperature (24, 25, 35). The collective dynamics observed
in this case is qualitatively different from that at the critical threshold. In both regimes, the dynam-
ics is collective and involves large-scale reorganizations. But from the more recent results, creep
avalanches display complex spatiotemporal patterns similar to those observed in earthquakes.

In this article, we review the main arguments and results of the past thirty years about creep,
paying particular attention to the recent progress. The article is organized as follows. In Section 2,
we introduce the model, present the dynamical regimes at zero temperature, and discuss the dif-
ferent universality classes. In Section 3, we provide the scaling arguments leading to the creep law,
namely the behavior of the steady velocity as a function of the applied force at finite temperature.

1However, depinning-inspired models have been adapted to produce aftershocks by adding terms of slow
relaxation or memory (32, 33).
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Figure 1

(a) Sketch of the interface pulled by an external force f. The filled circles are the impurities that contribute to
the pinning energy of the interface. In the random bond case (b), only neighboring impurities contribute,
whereas in the random field case (c) all the impurities on the left side of the interface contribute.

The numerical methods are discussed in Section 4. The more recent results valid in the limit of
vanishing temperature are presented in Section 5. In Section 6, we review the creep experiments
on domain wall dynamics. Conclusions and perspectives are given in Section 7.

2. DYNAMICAL PHASE DIAGRAM AT ZERO TEMPERATURE

We consider a d-dimensional interface in a d + 1 disordered medium. For simplicity, we as-
sume that the local displacement at any time t is described by a single valued function u(x, t) (see
Figure 1a) and that the dynamics is overdamped. At zero temperature, the equation of motion of
the elastic manifold is written as

γ ∂tu(x, t ) = c∇2u(x, t ) + f + Fp(x, u), 1.

where c�2u(x, t) describes the elastic force due to the surface tension, f is the external pulling
force, and γ is the microscopic friction. The fluctuations induced by impurities are encoded in
the quenched stochastic term Fp = −�uVp(x, u), where the energy potential Vp(x, u) describes the
coupling between the manifold and the impurities.

For simplicity, we assume the absence of correlations along the x direction,2 whereas the cor-
relations of Vp(x, u) along the u direction usually belong to one of two universality classes: (a) In
the random bond (RB) class, the impurities affect, in a symmetric way, the phases on each side of
the interface. They thus simply locally attract or repel the interface (see Figure 1b). In this case,
the pinning potential and the pinning force are both short-ranged correlated. (b) The random field
(RF) class describes a disorder coupling in a different way in the two phases around the interface.
Thus, the pinning energies are affected by the impurities inside the entire region delimited by
the interface (see Figure 1c). Then Fp displays short-range correlations while the pinning poten-
tial Vp(x, u) displays long-range correlations [Vp(x, u) −Vp(x′, u′ )]2 ∝ δ(x− x′ )|u− u′|. Here, the
overline denotes an average over disorder realizations.

Equation 1, the so-called quenched Edwards–Wilkinson (qEW) equation, is a coarse-grained
minimal model governing the dynamics of the interface, at zero temperature for the moment,
at large scales (22, 25, 26). It is a nonlinear equation in u that has been extensively studied by

2See Reference 36 for a discussion of the correlated disorder case.

www.annualreviews.org • Creep Motion 113

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
1.

12
:1

11
-1

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
om

is
io

n 
N

ac
io

na
l d

e 
E

ne
rg

ia
 A

to
m

ic
a 

on
 0

3/
11

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



numerical simulation (37), functional renormalization group (FRG) techniques (21, 38, 39), and
exact mean-field solutions (40–42). For the case of a contact line of a liquid meniscus (43) as well
as the crack front of a brittle material (44), the local elastic force is replaced by a long-range one:

c∇2u → c
∫

[u(x′, t ) − u(x, t )]
|x′ − x|α+d ddx′, 2.

with α = 1 and d = 1. The qualitative phenomenology of this generalized long-range model is
similar to the qEW, but the universal properties (as critical exponents and scaling functions) are
different. However, for α ≥ 2, one recovers the short-range universality class (45).

The solution of this class of equations shows a behavior reminiscent of second-order phase
transitions with the velocity playing the role of the order parameter and the force acting as the
control parameter. In particular, the steady velocity is zero below a critical depinning threshold fc,
and it acquires a finite value only above that threshold. The velocity vanishes continuously at the
critical force as v � ( f − fc)β . At the depinning, the interface appears rough with a width of

w2(L) = 1
L

∫ L

0
u2(x)dx−

[
1
L

∫ L

0
u(x)dx

]2

3.

that grows as L2ζdep , with L being the size of the system and ζ the roughness exponent. Both β
and ζdep are universal depinning exponents depending on the dimension d of the interface and
on the range α of the elastic force; but interestingly, these values do not depend on the disorder
type (20, 46). Slightly above fc, the dynamics of a point of the interface is highly intermittent: For
long times, the point is stuck with a vanishing velocity (much smaller than the average value v) and
suddenly starts to move with a high velocity. In second-order phase transitions at thermodynamic
equilibrium, the universality arises from the existence of a correlation length that diverges when
the transition is approaching the critical threshold. For depinning, the system is out of equilib-
rium, but the presence of large spatial correlations is manifested by the collective nature of this
intermittent dynamics: At a given time, though many pieces of the interface are at rest, large and
spatially connected portions move fast and coherently.

The presence of large correlations can be detected using a quasistatic protocol below (but close
to) fc. This is shown in Figure 2a, where an interface is at rest at a force f. Upon infinitesimally
increasing the force f→ f+ δf, an avalanche takes place: A large portion of the interface advances a
finite amount while elsewhere only readjusts infinitesimally (∝δf ).The avalanche locations cannot
be predicted, and their sizes (the areas spanned between two consecutive metastable states) present
scale-free statistics:

P(S) = S−τdepg(S/Sc ). 4.

TheGutenberg–Richter exponent τ is universal, as are β and ζdep; g(x) is a function that decays fast
for x≥ 1 and is constant for x< 1.The characteristic size of the maximal avalanche increases when
f → f −

c . In practice, Sc is the clear manifestation of the divergent correlation length ξ � | f −
fc|−νdep , and one expects Sc � ξ

d+ζdep � | f − fc|−νdep(d+ζdep ). Many works describe the dynamics
inside an avalanche (28, 33, 34, 47, 48): Typically the instability starts well localized at a given
point and spreads in space over a distance x(t) � t1/z up to a time tc � ξ z. In Table 1, we show
the relevant depinning exponents, their definition, and their mean-field and numerically known
finite-dimension values. For the qEW equation (Equation 1), it has been proven that there are
only two independent exponents, e.g., ζdep and z, and the other exponents can be computed by
nontrivial scaling relations (see Table 1). Note that these relations are valid in low dimensions,
and for d ≥ 2α the values of the exponents saturate at their mean-field values.

The physics is very different in the limits of very small or very high forces. The interface is at
equilibrium in the ground state at f= 0, its roughness is characterized by a very different (smaller)
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f + δf

T = 0

u(x)

x
ξ

S ~ Sc

a b

 Fast flow
v ~ f

Depinning
v ~ ( f − fc)β

Equilibrium
v = 0

f

v

Figure 2

(a) Sketch of an avalanche below fc: The applied force f is increased infinitesimally and a finite portion of the
interface is destabilized. The size S of the avalanche corresponds to the spanned area. (b) Dynamical phase
diagram at zero temperature. At f = fc, the velocity and the shape of the interface have a universal scaling
behavior; the dynamics is characterized by large and scale free avalanches. At f = 0, the interface is in the
ground state with a different roughness exponent, which depends on the correlation of the disorder (random
bond or random field). At very large force, the interface flows with a velocity that grows linearly with the
force, and the quenched disorder acts as a thermal noise.

roughness exponent, and the nature of the disorder matters: RF interfaces are rougher than RB
interfaces.The ground-state energy is an extensive quantity (grows asLd), but its sample-to-sample
fluctuations scale as Lθ . In Table 2, we show the relevant equilibrium exponents and their mean-
field and finite dimension values for RB disorder. For finite dimensions, the energy exponent θ
obeys the scaling relation θ = 2ζeq + d − α. This relation is a consequence of the statistical tilt
symmetry of the model, which assures that the elastic constant c is not renormalized. By contrast,
assuming that in equilibrium elastic and disorder energy scale in the same way, one has from

Eel[u] = c
2

∫
[u(x′, t ) − u(x, t )]2

|x′ − x|α+d ddxddx′ 5.

Table 1 Depinning exponents: mean-field and finite dimensiona

Depinning exponent Observable Mean field d ≥ 2α d = 1 α = 2 d = 1 α = 1 d = 2 α = 2
z t(L) ∼ Lz α 1.433 0.77 1.56

ζdep u(x) ∼ xζdep , w2 ∼ L2ζdep 0 1.250 0.39 0.75
τdep P(S) ∼ S−τdep 3/2 τdep = 2 − α/(d + ζdep)
νdep ξ ∼ | f − fc|−νdep α−1 νdep = 1/(α − ζdep)
β v ∼ |f − fc|β 1 β = νdep(z − ζdep)

aMean field is valid for d≥ 2α, where d is the dimension of the interface and α is the exponent that controls the range of the elastic interactions (Equation 2).
In finite dimensions depinning exponents are known numerically and are identical for random bond and random field disorder. The exponent β controls the
critical behavior of the velocity-force characteristics close to the transition, and νdep rules the divergence of the associated correlation length (typical linear
extension of avalanches). The dynamical exponent z controls both the spread x(t) of correlations in a developing avalanche and the geometrical equilibration
time t(L). The roughness exponent ζdep governs the width w2 (Equation 3) and the wandering u(x) of the critical interface configuration. τ dep rules the
power-law distribution of avalanche sizes. The displayed numerical values for ζdep are taken from Reference 49 for α = 1 and References 37 and 50 for α =
2. Those of z are taken from the following: Reference 37 for α = 2, d = 1; Reference 51 for α = 1, d = 1; and Reference 52 for α = 2, d = 2.
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Table 2 Equilibrium exponents with random bond disorder: mean-field and finite dimensiona

Equilibrium exponent Observable Mean field d ≥ 2α d = 1 α = 2 d = 1 α = 1 d = 2 α = 2
θ E(L) ∼ Lθ d/2 1/3 �0.2 �0.84
ζeq u(x) ∼ xζeq , w2 ∼ L2ζeq 0 2/3 �0.2 �0.41
τ eq P(S) ∼ S−τeq 3/2 τ eq = 2 − α/(d + ζeq)
νeq ξ ∼ f −νeq α−1 νeq = 1/(α − ζeq)

aMean field is valid for d ≥ 2α, where d is the dimension of the interface and α is the exponent that controls the range of the elastic interactions
(Equation 2). The energy exponent θ controls the growth of the elastic energy fluctuations (Equation 5), the roughness exponent ζeq governs the width and
wandering of equilibrium configurations, νdep rules the typical longitudinal size of thermal nuclei, and τ eq is their area distribution in the presence of a
small driving force f in the so-called creep regime. For α = 2, the results are exact in d = 1 (53); for d = 2, we display the numerical results from
Reference 54. For α = 1, the results are known from functional renormalization group calculations (39). Note that θ and ζeq obey the scaling relation
θ = 2ζeq + d − α. For random field disorder, in d = 1 one expects ζeq = 1/3 for α = 1 and ζeq = 1 for α = 2.

the relation Eeq ∝ L2ζeqL−(α+d )L2d ∼ L2ζeq+d−α . Note that for α ≥ d/2, the interface is flat (ζeq = 0),
and the energy exponent saturates to the central limit value θ = d/2.

At f → ∞, the quenched pinning reduces to an annealed stochastic noise because in the co-
moving frame one has Fp(x, u) = Fp(x, δu + vt) ∼ Fp(x, vt). For short-range correlated pinning
force, the strength of the disorder plays the role of an effective temperature Teff. Themotion is not
intermittent in this so-called fast-flow regime, and one recovers the standard Edwards–Wilkinson
dynamics with the generalized fractional Laplacian of Equation 2 (55). In particular, the dynam-
ical exponent is z = α and the roughness exponent is ζflow = (α − d)/2 for d ≤ α. For a larger
dimension, the Edwards–Wilkinson interface is flat.

For intermediate forces, the physics is not fully governed by any of the three characteristic
points described above (f = fc, f = 0, and f → ∞). Therefore, one could wonder if a completely
new scaling description should be introduced. It turns out that that it is not the case, at least for
f > fc. The physics of the interface can be described by a crossover between short length scales,
governed by the critical behavior at f = fc, and large length scales, governed by the fixed point of
f = ∞. Below the depinning threshold, f < fc, no steady state can be defined at zero tempera-
ture. The presence of a finite temperature, discussed in the next section, allows investigation of
a nontrivial stationary dynamical regime (the creep) with finite velocity at forces in between the
equilibrium and the depinning fixed point, and analysis of how these two fixed points affect the
dynamics at different scales.

The qEW equation and its generalization to long-range elasticity are well studied and under-
stood. In all these models, the nonstochastic part of the equation is linear in the displacement u,
and one can derive the scaling relation of Table 1. However, in the presence of anisotropies in
the disorder (56) or in the elastic interaction (57), a nonlinearity becomes relevant for short-range
elasticity. In this case, the equation of motion of the interface is written as

γ ∂tu(x, t ) = c∇2u(x, t ) + λ[∇u(x, t )]2 + f + Fp(x, u). 6.

The inclusion of this nonlinear term affects the physical behavior as f → ∞, leading to the
standard Kardar–Parisi–Zhang (KPZ) (53) dynamics rather than that of the Edwards–Wilkinson.
At depinning, if λf ≥ 0, the motion remains intermittent with large avalanches but with different
exponents (58, 59) characterized by new scaling relations, as shown in Table 3. When λf < 0, the
interface develops a sawtooth shape with an effective exponent ζdep = 1 (60). This regime has been
recently observed in Reference 61.
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Table 3 Exponents of the quenched Kardar–Parisi–Zhang (qKPZ) depinning universality
classa

qKPZ exponent d = 1 α = 2 d = 2 α = 2
z 1 1.1
ζdep 0.63 0.45
νdep 1.733 1.05
τdep τdep = 2 − (ζdep + 1/νdep)/(d + ζdep)
β β = νdep(z − ζdep)

aThe numerical values of the roughness exponent ζdep are taken from Reference 50. For d = 1, the exponents z and νdep are
taken from Reference 56; for d = 2 these exponents are taken from Reference 58. The existence of an upper critical
dimension is under debate.

3. VELOCITY AT FINITE TEMPERATURE

At finite temperature, the interface has a finite steady velocity v, even below fc. The energy of the
interface can be written as the sum of three contributions,

E[u] =
∫ L

0
ddx

{ c
2
[∇u(x)]2 +Vp[x, u(x)] − f u(x)

}
. 7.

The first term on the right-hand side is the elastic energy of the interface; the second, the pinning
potential; and the third, the energy associated to the driving force f. We note that the equation of
motion (Equation 1) is obtained from γ�tu(x, t) = −δE[u]/δu(x, t). At finite temperature, one can
write the associated Langevin equation,

γ ∂tu(x, t ) = c∇2u(x, t ) + f + Fp(x, u) + η(x, t ), 8.

with 〈η(x, t)η(x′, t′)〉 = 2γTδ(t − t′)δ(x − x′), where the average is over different realizations of the
thermal noise while the disordered landscape remains fixed.

In the presence of a finite drive, the energy (Equation 7) has no lower bound as it is tilted by
the force and on average decreases linearly by increasing u. Yet, the presence of pinning gener-
ates metastable states and barriers up to fc. The activated motion at finite temperature allows for
overcoming these barriers, yielding a finite steady-state velocity.

The velocity force characteristics are represented in Figure 3a. At very small force and fi-
nite temperature, a creep regime is observed, where the velocity displays a stretched exponential
behavior:

v( f ,T ) = v0e
−

(
fT
f

)μ
, 9.

with v0 and fT dependent on the temperature and the microscopic parameters, whereas μ is a
universal exponent. This creep law was verified experimentally first by Lemerle et al. in ferromag-
netic ultrathin films with μ � 1/4 (62; see Figure 3b). Rather strikingly, this law can span several
decades of velocity (from almost walking speed to nail-growth speed) by just varying one decade
of the externally applied magnetic field at ambient temperature. The creep law was subsequently
found by many other experiments (63, 64; see Section 6 for a brief review), confirming the uni-
versality and robustness of several creep properties. Such universality naturally calls for minimal
statistical-physics models, on which we focus below.

Equation 9 has been predicted in References 65–67 and derived within the FRG technique
in Reference 46. The stretched exponential behavior originates from the collective nature of the
low-temperature dynamics of these extended objects. For a point-like system embedded in a short-
range disorder potential, the response to a small force is linear in f. The idea is to consider that
the energy landscape is characterized by valleys at a distance�u separated by an energetic barrier
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T > 0
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Figure 3

(a) Velocity force characteristics at finite temperature. When f is very small compared to fc and at very small
temperature, one observes the creep law ln v ∼ f−μ. Panel a adapted from Reference 25. (b) First
experimental verification of a creep law consistent with μ = 1/4 in 2D ultrathin Pt/Co/Pt film at room
temperature. Panel b adapted from Reference 62.

of typical size Ep. In the presence of the tilt introduced by a finite force f, the energy gap between
two consecutive valleys becomes ∼f�u (see Figure 4). According to the Arrhenius law, the time to
jump from left to right will be eβ (Ep− f�u/2), whereas the time for jumping from right to left would
be eβ (Ep+ f�u/2). Therefore, the velocity can be computed as the thermally assisted flux flow (TAFF;
68, 69) across the barrier:

v ∝ e−β (Ep− f�u/2) − e−β (Ep+ f�u/2) � e−βEp�u f . 10.

We conclude that, in the presence of bounded barriers, the velocity will be linear even with expo-
nentially suppressed mobility.

For an extended object, the typical barrier grows when the external force vanishes and its diver-
gence is at the origin of the stretched exponential behavior in Equation 9. In Figure 5, we show
different configurations obtained at different times from the direct integration of Equation 8. At

a b

En
er

gy
la

nd
sc

ap
e

Ep

u

fΔu

Δu

− 1
α − ζ

E(
   )

opt ~ f
θ − f  ζ + d

θ

f  ζ + d

Figure 4

(a) Thermally assisted flux flow. The activated velocity of a single degree of freedom in a short-range disordered potential is linear in
the force and exponentially suppressed by the size of the typical barrier, Ep. (b) Creep behavior. The energetic barrier encountered by
an interface diverges when the applied force vanishes. Indeed, in order to find a new metastable state characterized by smaller energy, a
large portion of the interface has to reorganize. Scaling arguments predict that the linear size of such reorganization scales as

�opt ∼ f
− 1
α−ζeq .
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t1
t2 > t1
t3 ≫ t2

Figure 5

Configurations at different times obtained by direct integration of Equation 8. Incoherent oscillations are
observed at short times, and the configurations differ only at short length scales. At much longer times, the
line advances in the direction of the force with a coherent excitation that involves a large reorganization.

short times, one observes incoherent oscillations and the configurations differ only at short length
scales. At much longer times, the line advances in the direction of the force with a coherent ex-
citation that involves a large reorganization. This collective motion leads the system to a local
minimum characterized by a lower energy due to the presence of the force. It is very unlikely
that the interface will climb back to the previous configurations characterized by a higher energy.
This new and deeper valley is the starting point of a new search in the forward direction. At these
timescales, the dynamics of the line can be seen as a sequence of metastable states,

α1 → α2 → α3 → . . . , 11.

characterized by decreasing energies

Eα1 > Eα2 > Eα3 > . . . . 12.

At low temperature and starting from a given metastable state α1, among all metastable states with
lower energy, the one that we reach by crossing the minimal barrier is α2. From α2, a new minimal
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barrier crossing takes us to α3, and so on. It is possible to show that for an interface of internal
dimension d embedded in a d+ 1 dimension, the pathway obtained with such a rule is the optimal
one (and thus the one that dominates the statistics of the dynamics) in the low-temperature limit
(70).

The first attempts to evaluate the barriers and the length scales associated to this coarse-grained
dynamics have been conducted in References 65 and 66 and in Reference 46 via FRG. The main
assumption in their original derivations is that, during the dynamical evolution, the energy barriers
scale as the energy fluctuations of the ground state at f= 0. At equilibrium, the fluctuations of the
free energy are known to grow with the system size with a characteristic exponent θ that depends
on the equilibrium roughness exponent via an exact scaling relation θ = 2ζeq + d − α. Numerical
simulations in Reference 71 have shown that the barriers separating two equilibrium metastable
states, which differ on a portion �, grow as �ψ with an exponent consistent withψ � θ . Using these
ideas, one can assume that the energy barriers due to the pinning centers and in absence of tilt
grow with the size of the reorganization,

Ep(�) ∼ �θ = �2ζeq+d−α. 13.

If the motion is in the forward direction, one must subtract the energy induced by the tilt,

Ef (�) ∼ f u(�) �d = f �ζeq+d . 14.

In Figure 4b, we show that the competition between these two terms (Equations 13 and 14) yields
the characteristic length scale �opt of the optimal reorganization [and the optimal barrier Ep(�opt)],
allowing a new metastable state with a lower energy to be reached:

�opt ∼ f − 1
α−ζeq , Ep(�opt ) ∼ f − θ

α−ζeq. 15.

Using the scaling of Ep in Equation 10, one recovers the creep law, Equation 9, and identifies the
creep exponent,

μ = θ

α − ζeq
= 2ζeq + d − α

α − ζeq
, 16.

as an equilibrium exponent. Particularly in d = 1, for RB disorder and short-range elasticity, one
recovers μ = 1/4 as in the experiment (62).

Although for the average velocity there is excellent agreement between the simple scaling ar-
guments (65, 66, 69) and the more sophisticated FRG analysis (46), the FRG showed clearly that
other length scales besides �opt (see Figure 4b) were necessary to describe the motion, which
points to rich dynamics in the creep regime. In particular, the FRG showed that in the dynamics
the thermal nucleus led to avalanches at larger length scales than �opt itself. To make a full analy-
sis of the creep regime, a numerical investigation was thus eminently suitable. However, this is a
highly nontrivial task considering the exponentially large timescales and length scales.We discuss
how to undertake such a study in the next section.

4. NUMERICAL METHODS

The direct simulation of the Langevin Equation 8 has been performed in Reference 67 and later in
Reference 72. This approach confirms a nonlinear behavior for the velocity-force characteristics
but fails in probing the specific scaling of the creep law. In fact, at low temperature, these methods
can focus only on the microscopic dynamics describing incoherent and futile oscillations around
local minima (see Figure 5). The forward motion that allows escape from these minima occurs at
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very long timescales that are difficult to reach. In practice, one must increase the temperature or
the force bringing the system beyond the validity of the creep scaling hypothesis.

A completely different strategy focuses on the coarse-grained dynamics at the timescales of
the coherent reorganizations that are able to lower the energy. In practice, one must model the
interface as a directed polymer of L monomers at integer positions u(i), where i = 1, . . . ,L,
and with periodic boundary conditions [u(L + 1) = u(1)]. The energy of the polymer is given
by

E =
∑
i

{
[u(i+ 1) − u(i)]2 − f u(i) +V [i, u(i)]

}
. 17.

To reduce the configuration space, it is useful to implement a hard metric constraint such that

|u(i+ 1) − u(i)| ≤ κ , 18.

with κ ∼ O(1) being an integer.
To model RB disorder, one can define VRB(i, u) = Ri, u with Ri, u being Gaussian random num-

bers with zero mean and unit variance, whereas for RF disorder VRF(i, u) = ∑u
k=0 Ri,k, such that

[VRF(i, j) −VRF(i′, j′ )]2 = δi,i′ | j − j′|.
At the coarse-grained level, the dynamics corresponds to a sequence of polymer positions de-

termined using a two-step algorithm.

� Thermal activation: Starting from any metastable state, one must find the compact rear-
rangement that decreases the energy by crossing the minimal barrier among all possible
pathways.

� Deterministic relaxation: After the above activated move, the polymer is not necessarily
in a new metastable state and relaxes deterministically with the nonlocal Monte Carlo ele-
mentary moves introduced in Reference 73.

From the computational point of view, the most difficult task is in the first step. In principle, one
fixes a maximal barrier and enumerates all possible pathways that stay below the maximal allowed
energy. If one of them reaches a state with a lower energy, the thermal activation step is over;
otherwise the maximal barrier is increased and the process is repeated. This protocol is exact; it
has been implemented in Reference 70, but it has severe computation limitations at low forces as
the minimal barrier is expected to diverge for vanishing forces. In order to explore the low-force
regime, a different strategy has been adopted in Reference 74. Instead of looking to the pathway
with the minimal barrier, one selects the smallest rearrangement that decreases the energy. This
is done by fixing a window w and computing the optimal path between two generic points i and
i + w of the polymer using Dijkstra’s algorithm adapted to find the minimal energy polymer
between two fixed points. The minimal favorable rearrangement corresponds to the minimal
window for which the best path differs from the polymer configuration. Using this strategy, it
was possible not only to increase the system size by a factor of 30 but also, and more importantly,
to decrease the external drive f by a factor of 100, unveiling the genuine creep dynamics.

5. CREEP DYNAMICS IN THE LIMIT OF VANISHING TEMPERATURE

Here, we give a summary of the main results obtained using the coarse-grained dynamics intro-
duced in References 70 and 74. The output of the algorithm is a sequence of metastable states
αk (k = 1, . . . , n), as shown in Figure 6. In Reference 70, Ep is the minimal barrier among all
possible pathways, whereas in Reference 74 the criterion of the minimal barrier has been approx-
imated with the criterion of the minimal rearrangement, which allows for reaching much smaller
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αk

αk

αk+1 αk+1

En
er

gy

Path

β

Ep

Seve

Leve

β

Step 1

a b

Figure 6

Sketch of the selected pathway starting from the metastable state, αk. (a) During step one of the algorithm,
one searches for a polymer configuration with an energy smaller than the one associated to αk by crossing a
minimal barrier Ep. (b) The polymer relaxes deterministically to a metastable configuration; no barriers are
overcome at this stage. Figure adapted from Reference 70.

forces and much larger sizes. The area between two subsequent metastable states (see Figure 6)
defines the size of an activated event. Below this size, the dynamics is futile, being characterized
by incoherent vibrations, whereas once the new metastable state is reached the backward move is
suppressed.

5.1. Statistics of the Events and Clusters

From the scaling arguments of Section 3, one expects that the area of the activated events is
of the order �d+ζeqopt with �opt, which grows when the force decreases (see Equation 15). How-
ever, the distribution shown in Figure 7 displays a power-law scaling analogous to the depinning
one,

P(Seve ) ∼ S−τ
eveg(Seve/Sc ). 19.

When the force decreases, the cutoff Sc( f ) grows and displays the scaling predicted in Section 3:

Sc ∼ �
d+ζeq
opt ∼ f −νeq(d+ζeq ). 20.

Here, d = 1 and ζeq depends on the nature of the disorder: For RB, Sc( f ) ∼ f−5/4, whereas for RF,
Sc( f ) ∼ f−2.

Equation 19 implies that the typical activated events are much smaller than the one predicted
by scaling arguments.However, few very large events dominate the characteristic timescales of the
forward motion. The behavior of the velocity in the creep formula is then determined by the oc-
currence of such large reorganizations. Indeed, the barriers associated with the largest elementary
events are expected to scale as

Uopt( f ) ∼ �θopt ≈ Sc( f )θ/(d+ζeq ). 21.

Then the mean velocity in the Arrhenius limit is written as

v ∼ exp[−Uopt/T ] ∼ exp[−( fT/ f )μ/T ], 22.
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Figure 7

Events size distributions P(Seve) for RB (a) and RF (b) at different forces. Main panels show collapses by plotting Seve/Sc with
Sc( f ) = f −νeq(1+ζeq ). Insets show the unscaled distributions. Note that for RB disorder, Sc( f ) = f−5/4, whereas for RF disorder, Sc( f ) =
f−2. The perfect collapse validates the expected creep scaling, �opt ∼ f −νeq , given Sc ∼ �

(1+ζeq )
opt . Figure adapted from Reference 74.

Abbreviations: RB, random bond; RF, random field.

with μ = θ/(2 − ζeq), recovering the correct formula for the mean velocity, i.e., the celebrated
creep law of Equation 9. The main difference with the previous scaling approaches (65, 66) is that
the creep law is determined not by the typical events but by the largest ones instead.

To get further insight on the sequence of these events, one notes that the exponent τ of P(Seve)
is larger than the one expected in equilibrium (in particular in Figure 7, for RB, τ = 1.17 instead
of τ eq = 4/5 and, for RF, τ = 1.59 instead of τeq = 1). The anomaly observed in the exponent
τ is the first fingerprint of a discrepancy between creep events distributions and other types of
avalanches, such as the depinning ones, going well beyond the anticipated differences of critical
exponents. In Figure 8, the typical sequence of avalanches is randomly located in space, whereas
the creep events are organized in spatiotemporal patterns very similar to those of earthquakes:
The large events are the main shocks that are followed by a cascade of small activated events. The
events in the cascade are analogous to the aftershocks that are responsible for an excess of small
events in the Gutenberg–Richter exponent as reported also in the analysis of real earthquakes (31,
33, 75).3 Similar patterns for the elementary activated events were observed below but near the
depinning threshold (76).

In order to analyze the spatiotemporal patterns, one can study the clusters of correlated events,
defined by the activated events enclosed by a circle in Figure 8. All details in the definition of the
clusters are found in Reference 74.

Surprisingly, for both RB and RF disorders, the statistics of the clusters appear as one of the
depinning avalanches with τ dep = 1.11 and the cutoff controlled by the system size and diverging
in the thermodynamic limit (27; see Figure 9).

3The Gutenberg–Richter exponent, b = 3
2 (τ − 1), for the earthquake magnitude distribution should be

smaller than the mean-field prediction of 3/4, but from seismic records one gets (31, 33) b � 1.
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Figure 8

(a) Sequence of activated events in the creep regime. First, in the activity map, each segment corresponds to
an event and displays its longitudinal length. The full configurations of 300 consecutive metastable states are
shown immediately after. An individual event of size Seve and a cluster of size Sclust are exemplified.
(b) Sequence of deterministic avalanches close to the depinning that appear randomly distributed in space.
Again, both activity map and sequence of configurations are shown. Figure adapted from Reference 74.
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Cluster area distribution P(Sclust) for different forces for random bond (a) and random field (b) disorder. A characteristic size Sc( f )
separates small clusters that follow equilibrium-like statistics from big clusters that follow a depinning-like one. This result is confirmed
by the study of the rescaled structure factor S(q) for the same forces (insets): a geometrical crossover is observed from equilibrium-like
roughness at small scales to a depinning-like roughness at large scales. Figure adapted from Reference 74.

124 Ferrero et al.

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
1.

12
:1

11
-1

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
om

is
io

n 
N

ac
io

na
l d

e 
E

ne
rg

ia
 A

to
m

ic
a 

on
 0

3/
11

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Equilibrium

Depinning

a b 
op

t, 
ξ

2π/  opt2π/ξ q

S(
q)

ζflow

ζdep

ζeq

fc f
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Figure 10

(a) Dynamical phase diagram proposed in Reference 46 at finite temperature. Below fc, the crossover
between equilibrium and depinning occurs at the scale �opt. At finite temperature, there is also a crossover at
a length scale ξ between depinning and fast flow. However, ξ diverges in the limit of small temperature.
(b) Behavior of the roughness measured from the structure factor consistent with the dynamical phase
diagram. Figure adapted from Reference 70.

5.2. Geometry of the Interface

An independent and complementary confirmation of these results comes from the study of the
roughness of the interface at different scales as introduced in Reference 70. In practice, one mea-
sures the structure factor,

S(q) = u(q)u(−q) ∼ q−(d+2ζ ), 23.

where u(q) is the Fourier transform of the position of the interface and the overline represents the
average over many configurations.The insets of Figure 9 show that there exists a crossover 1/qc ∼
�opt between two different behaviors of the roughness: At small length scales the interface seems to
be at equilibrium,whereas at large length scales it appears at depinning.This observation supports
the idea that the clusters are depinning-like above a scale �opt. Although such a result is consistent
with the predictions obtained by FRG in Reference 46, it should be stressed that these clusters
with depinning statistics above �opt are formed by several activated events rather than generated
by a single deterministic move.

The coarse-grained dynamics studied here is in the limit of vanishing temperature. At finite
temperature, the velocity is nonzero; this induces the fast flow roughness to become relevant at
large length scales (see Figure 10). The crossover occurs at a scale ξ that diverges at vanishing
temperature. The FRG proposes a scaling form for ξ at low temperature and force that depends
on f and T (46), but this form was never tested in numerical simulation or experiments.

The roughness exponent measured at large scales ζdep ≈ 1.25 (see the inset of Figure 9) is in
agreement with the depinning exponent of the qEW universality class. The qEW depinning ex-
ponents are expected when the elastic interactions are harmonic and short range as in Equation 7.
When the interactions are anharmonic (57, 77) or a metric constraint such as that in Equation 18
is present, the depinning is in the quenched KPZ (qKPZ) universality class. In particular, the
roughness exponent is expected to be ζ qKPZ

dep ≈ 0.63 (57, 70). The reasons why simulations deep
in the creep regime (but with the metric constraint of Equation 18) display a crossover from
ζeq to ζdep instead of a crossover from ζeq to ζ qKPZ

dep are analyzed by E.E. Ferrero, L. Foini,
T. Giamarchi, A.B. Kolton, and A. Rosso (manuscript in preparation). The exponents of the qEW
universality class show up at an intermediate regime, but at very large scales the qKPZ exponents
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(a) Structure factor for the RB case showing the characteristic length scale, Lanh, which separates the harmonic depinning regime with
roughness exponent ζdep from the anharmonic depinning regime with exponent ζ qKPZ

dep , for different high forces f � {0.2, 0.5, 0.6, 0.7,
0.8, 0.9}, L = 3,360. The bottom-left inset shows the raw structure factor arbitrarily shifted in the vertical direction for different forces
for a better display. The main panel shows the structure factor rescaled with Lanh∝(�opt/Lc)7/3, as proposed in Equation 24 for RB
disorder. Straight gray lines are a guide to the eye, showing slopes corresponding to ζdep � 1.25 (solid gray line) and ζ qKPZ

dep � 0.65
(dashed gray line). (b) Cluster-size distributions for L = 3,360 and f � {0.2, 0.5, 0.8}. The anharmonic crossover has consequences in the
cluster distribution for large cluster sizes. In the depinning regime, the power-law decay has a crossover from a regime described by
τdep ≈ 1.11 to a regime described by τqKPZ

dep ≈ 1.25 indicated by the two dashed lines. Abbreviation: RB, random bond.

are recovered, as expected. The crossover between the two depinning regimes is estimated to be

Lanh ∝ �

ζdep−ζeq
ζdep−1

opt . 24.

The crossover occurs at very large sizes for small forces, and it cannot be observed numerically.
However, at larger forces the crossover can be observed as shown in Figure 11a for the structure
factor and in Figure 11b for the cluster size statistics.

5.3. Optimal Paths and Barriers

The exact algorithm for simulating the coarse-grained dynamics below the depinning threshold
is computationally expensive but has the advantage of giving access to the energy barriers of the
activated motion (70). If the interface moves on a torus (namely, periodic boundary conditions
are assumed in both x and u), the dynamics reaches a stationary state independent of the initial
condition, with a finite sequence of metastable states αk separated by barriers Ep(αk → αk + 1) that
can be computed exactly.

Barriers are important, because the Arrhenius activation formula tells us that at vanishing tem-
peratures the steady-state forward motion of the elastic interface is fully controlled in a finite
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Figure 12

(a) Average over disorder realizations of the dominant barrier, as obtained by using the exact transition pathways algorithm. Panel
adapted from Reference 70. (b) Rescaled energy barrier as a function of H/Hdep for different materials and temperatures ranging from
10 to 315 K (25 curves in total). Black circles correspond to the barriers shown in panel a. Panel adapted from Reference 78.

sample by the largest barrier U = max kEp(αk → αk + 1) encountered in the stationary sequence of
metastable states. The dominant configuration αk∗ such that U = Ep(αk∗ → αk∗+1) is the largest
barrier in a given sample plays a role similar to a ground-state configuration in an equilibrium
system, in the sense that its attributes tend to dominate the average properties at low enough
temperatures (compared with the gap between the first- and second-largest energy barriers).

In Figure 12a, we show themean valueU as a function of the force. As expected from the creep
formula, U grows with decreasing force. Unfortunately, the computational cost of applying the
exact algorithm is too high to verify the asymptotic scalingU ∼ f −μ when f → 0. When f → fc,
the barrier vanishes and the size of the activated event becomes of the order of the Larkin length,
the length for which the relative displacements are of the order of the interface thickness (or the
correlation length of the disorder; 24). This matches nicely with the behavior expected for the
critical configuration at f = fc. There, the barrier is zero as the configuration is marginally stable
and the soft mode is localized (Anderson-like) with a localization length that can be identified
with the Larkin length (79). In Figure 12b, we show the same quantity obtained in experiments
for different ferromagnetic domain walls.

6. COMPARISON WITH EXPERIMENTS

The creep regime has been studied in different types of domain walls. Paradigmatic examples are
domain walls in thin film ferromagnets with out-of-plane anisotropy (12), driven by an external
magnetic field or by an external electric current. In these systems, the domain walls can be directly
observed by microscopy techniques based on the magneto-optic Kerr effect (MOKE).This makes
measuring the mean velocity as a function of the applied field and the domain wall geometry
possible. More recently, the analysis of the images has allowed identification of the sequence of
events connecting different metastable domain wall configurations in the presence of a uniform
weak drive. In this section, we briefly review part of such experimental literature. For a dedicated
review of the experimental literature on magnetic domain walls up to 2013, including reports of
different values ofμ and strong pinning issues, see Reference 12.As a side remark,we alsomention
the possibility of studying the creep regime of domain walls in ferroelectric materials driven by
an external electric field and observed with piezoelectric force microscopy (14, 15).
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6.1. Creep Velocity

The creep law (Equation 9) was first experimentally tested in thin ferromagnetic films
(Pt/Co(0.5 nm)/Pt) driven by a magnetic field H by Lemerle et al. (62). They observed a clear
stretched exponential behavior (log v ∝ −H−μ) of the stationary mean velocity as a function of
the applied field. Rather strikingly, such law can span several decades of velocity, from almost
walking speeds to the speed of nail growth. The creep exponent μ was found to be compatible
with the prediction μ = (2ζeq − 1)/(2 − ζeq) = 1/4, where the equilibrium roughness ζeq = 2/3
corresponds to an RB disorder. A confirmation of the validity of the creep predictions was re-
ported later in a study of Ta/Pt/Co90Fe10(0.3 nm)/Pt ferromagnetic thin film wires (63). In this
paper, not only Equation 9 with μ ≈ 1/4 was verified but also a dimensional crossover (d: 1 → 0)
was observed in the velocity force characteristic at low field. Indeed, by decreasing the magnetic
field, the length scale �opt grows as ∼H−νeq with νeq = 1/(2 − ζeq) up to the size of the wire’s width
at which point it saturates. Consequently, the barrier Ep ∼ �θopt saturates, inducing the breakdown
of the creep law of Equation 9 when �opt becomes of the order of the wire width. A dimensional
crossover (d: 1→ 0) then takes place, from creep, Equation 9, to a TAFF-like regime, Equation 10.

From the creep theory perspective, the experiments of References 62 and 63 hence provide
crucial information: (a) Although domain walls are actually two-dimensional objects in three-
dimensional materials, they effectively behave as a simpler one-dimensional elastic object. In other
words, the thickness of the magnetic film is smaller than �opt and the dynamics is governed by
energy barriers with θ (d = 1). (b) Dipolar interactions originated by stray magnetic fields seem to
be unimportant, otherwise the nonlocal elasticity would change the exponent μ. (c) The disorder
is of RB type, as for RF disorder one expects ζeq = 1, yielding μ = 1. This is particularly relevant,
because the nature of the domain wall pinning is one of the less controlled properties of the hosting
materials.

Because of the pioneering work by Lemerle et al. (62), there have been several recent works
in thin magnetic systems reporting a consistent creep behavior with a mean domain wall velocity
showing a stretched exponential law with μ= 1/4 at low-enough driving fields (12, 64, 78, 80–87)
and for different temperatures (78).The energy barrier encountered by thewall has been estimated
using the Arrhenius formulaU= −KBT log v/v0, with v0 being a characteristic field-independent
velocity (64). Its behavior as a function ofHwas found to be universal for a large family ofmaterials:
U diverges at small fields as predicted by the creep law, U ∼ H−μ, and vanishes at the depinning
field as U ∼ (H − Hd) (see Figure 12b). Both asymptotic behaviors are well described by the
matching expression U ∼ [1 − (Hd/H)μ]. Furthermore, the behavior experimentally observed for
U as a function of H is in perfect agreement with the value U found in Reference 70 shown in
Figure 12a.

6.2. The Roughness Puzzle

Another important test of the creep theory is to study the steady-state roughness of the interface.
From Figure 10, we expect that the width of a domain wall of size L and w(L) (see Equation 3)
should scale as

w2(L) ∼

⎧⎪⎨
⎪⎩
L2ζeq if L < �opt

L2ζdep if �opt < L < ξ

L2ζflow if ξ < L.
25.

Lemerle et al. (62) and various following works report ζ ≈ 0.7 ± 0.1, in agreement with the equi-
librium value ζeq = 2/3 but far from the depinning qEW universality class ζdep = 1.25. As we
discuss below, however, in the light of the current theory for creep and more recent experiments,
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(a) Roughness exponents obtained in Reference 62 by fitting the displacement correlator function [u(x+ L) − u(x)]2 ∼ L2ζ with
1µm < L < 15µm and v = 7 nm/s. The average exponent is ζ ≈ 0.69 ± 0.07. (b) Roughness exponent obtained in Reference 84 by
fitting the detrended width. Different symbols correspond to two domain wall configurations at v ≈ 2 nm/s. The solid line indicates a
quenched Edwards–Wilkinson scaling 2ζdep ≈ 2.5, and the dashed line indicates a quenched Kardar–Parisi–Zhang scaling
2ζ qKPZ

dep = 1.26.

the identification of the observed ζ with ζeq = 2/3 cannot be justified, calling for a new reinter-
pretation of the data.

Recently, Gorchon et al. (78) studied field-driven domain walls in the prototypical ultrathin
Pt/Co(0.45 nm)/Pt ferromagnetic films. By fitting the velocity force characteristics in the creep
and depinning regimes, they determined the critical depinning field Hdep ≈ 1,000Oe and a char-
acteristic energy scale Tdep ≈ 2,000K at room temperature (T = 300K). With these values it is
possible to estimate �opt using the assumptions of weak pinning (88–90):

�opt = Lc(Hdep/H )νeq ,

Lc = (kBTdep)/(MsHdepwcδ).
26.

The microscopic Larkin length Lc can be evaluated as a function of the domain wall width wc, the
thickness of the sample δ, and the saturation magnetizationMs. All these micromagnetic parame-
ters are known, yielding Lc ≈ 0.04µm (see Reference 83 for the analysis for different materials).
Using a spatial resolution of 1µm, typical for MOKE setups and the measured Hdep ≈ 1,000Oe,
one can get the condition H � 0.4Oe at room temperature to resolve the typical thermal nucleus
size, i.e., �opt > 1µm. Interestingly, �opt was estimated in Ta/Pt/Co90Fe10(0.3nm)/Pt wires (63)
with a completely different method, observing finite size effects as the wire width w was reduced.
A good scaling �opt ∼ H−νeq with one-dimensional RB exponents, compatible with ζeq = 2/3, was
found. For these samples a field of H = 16Oe gives �opt ≈ 0.16µm, which is remarkably in good
agreement with the above estimate for the Pt/Co/Pt film. Unfortunately, no direct roughness ex-
ponentmeasurements were reported in Reference 63 (seeFigure 13).The above estimates suggest
that the range of length scales used to fit experimentally the roughness exponent exceeds the size
of �opt. This implies that the value ζ ∼ 0.6–0.7 recorded in References 62, 86, and 91–93 cannot
be interpreted as an equilibrium exponent and must actually correspond to the depinning regime
or to the fast flow regime of roughness (see Figure 2).
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The fast flow exponent predicted for RB or RF systems is ζflow = 1/2,which is quite far from the
observed values. For short-range elasticity there are two universality classes at the depinning tran-
sition: the qEWwith a roughness exponent ζdep � 1.25 and the qKPZwith ζ qKPZ

dep � 0.63.The first
value is consistent with the roughness exponent obtained in Reference 84 at low velocity, whereas
the second value is remarkably close to the values at higher velocity reported in Reference 62.
A possible way to solve this puzzle is to invoke a crossover qEW–qKPZ already observed in the
numerical simulations in Section 5.2. There, at low drive, the crossover occurs at very large length
scales, and the qEW exponents are measured. At higher drive the qKPZ is recovered already at
short distances. To invoke such an identification, however, we have to justify the presence of a
KPZ term in the effective domain wall equation of motion. At least two mechanisms can justify
the presence of a nonlinear KPZ term: (a) A kinetic mechanism yields λ ∼ v (53) for interfaces
driven by a pressure (i.e., driven by a force locally normal to the interface). (b) A quenched disorder
mechanism induced by the anisotropy of the disorder (56) or anharmonicities in the elasticity (50,
57, 77) yields a velocity independent λ. At the depinning transition only the second mechanism
is relevant, but at the moment we lack a microscopic derivation and the presence of crossovers
between qEW and qKPZ is still under debate.

To shed light on this puzzle, another important ingredient that should potentially be considered
is the presence of defects such as bubbles and overhangs, at short length scales. The effects of
these defects on the large-scale properties of the domain wall are not yet well understood. Large-
scale simulations on the three-dimensional RF Ising model showed an anomalous behavior of the
roughness of the interface that does not mesh with the qEW prediction (94; see also 95).

6.3. Creep Avalanches

A direct experimental access to the thermally activated events and clusters would constitute a
strong test for the current theoretical picture. Repain et al. (96) observed reorganizations in the
creep regime whose characteristic size qualitatively increases when lowering the field. It is not
clear if these reorganizations can be identified with the thermally activated events as they look
like chains of concatenated arcs (see inset in Figure 14), suggesting the presence of strong diluted

a b

Av
al

an
ch

e p
os

iti
on

 (μ
m

)

Time (min)

6

4

2

0 200 400
10 μm

Figure 14

(a) Large reorganizations as obtained by Repain et al. (96) in irradiated Pt/Co/Pt thin films. The inset shows
the successive domain wall configurations in a 92 × 28-µm2 field of view. Time interval between two images
is �t = 200 s. (b) Sequences of magnetization reversal areas detected deep in the creep regime of Pt/Co/Pt
thin films, as obtained by Grassi et al. (84). In this image time windows of �t = 15 s were used.
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pinning. More recently, Grassi et al. (84) performed a detailed and more quantitative analysis in
nonirradiated Pt/Co/Pt films, focusing on regions of the sample in which strong pinning was not
present. They observed almost independent thermally activated reorganizations. Their observa-
tions are consistent with the existence of creep avalanches with broad size and waiting-time distri-
butions. It is tempting to identify them with the clusters found in numerical simulations discussed
in Section 5.1.

The quantitative experimental study of creep events remains a big experimental challenge.The
single thermally activated event or elementary creep event of Section 5 is systematically too small
to be resolved by Kerr microscopy, even for velocities of the order of v ∼ 1 nm/s. Partially devel-
oped clusters appear to be accessible, however, yielding indirect information about the elementary
events that control the mean creep velocity. Understanding the effect of strong diluted pinning
mixed with weak dense pinning is of crucial importance for a quantitative analysis, because ele-
mentary activated events could be equally associated to the collective rearrangements of typical
size �opt or to activated depinning from strong centers.

7. CONCLUSIONS AND PERSPECTIVES

Elastic interfaces driven in disordered media represent a dramatic simplification of physical sys-
tems, such as magnetic domain walls in disordered ferromagnets. However, by encompassing the
key interplay between elasticity and disorder, these models are able to predict with extraordinary
precision some properties that are practically impossible to infer from more realistic microscopic
approaches. An important example is provided by the creep regime.The theoretical picture is now
well understood:

� The velocity versus the force characteristics displays a stretched exponential behavior.
� The geometrical properties of the interface show a crossover from an equilibrium-like be-

havior at short length scales to a depinning-like behavior at large length scales.
� The dynamics displays spatiotemporal patterns (creep avalanches) made of many correlated

activated events.The statistical properties of these avalanches are described by the depinning
critical point.

The creep regime is relevant for many physical systems, ranging from fracture fronts to contact
lines or ferroelectric domain walls. The most striking confirmation comes, however, from the
experiments in ferromagnetic films. There, the stretched exponential behavior of the velocity is
today well established. More recently, the analysis of the MOKE images showed the fingerprints
of avalanche creep dynamics.

Despite the success of the elastic interface model, many important questions remain open.
First, the statistical properties of the creep avalanches are still an experimental challenge: The
elementary events are too small to be resolved with MOKE microscopy, and the spatiotemporal
correlations have not been characterized. Second, there is a mismatch between the roughness ex-
ponents observed in numerical simulations and those observed experimentally. Finding a solution
for this puzzle is probably one of the biggest current challenges in the field.We hope these ques-
tions will motivate further research on the universal collective dynamics of elastic interfaces in
random media.
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