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Abstract

CrossMark

The strain load A~ that triggers consecutive avalanches is a key observable in the slow
deformation of amorphous solids. Its temporally averaged value (A~) displays a non-trivial
system-size dependence that constitutes one of the distinguishing features of the yielding
transition. Details of this dependence are not yet fully understood. We address this problem by
means of theoretical analysis and simulations of elastoplastic models for amorphous solids. An
accurate determination of the size dependence of (A+y) leads to a precise evaluation of the
steady-state distribution of local distances to instability x. We find that the usually assumed
form P(x) ~ x (with 6 being the so-called pseudo-gap exponent) is not accurate at low x and
that in general P(x) tends to a system-size-dependent finite limit as x — 0. We work out the
consequences of this finite-size dependence standing on exact results for random-walks and
disclosing an alternative interpretation of the mechanical noise felt by a reference site. We test
our predictions in two- and three-dimensional elastoplastic models, showing the crucial
influence of the saturation of P(x) at small x on the size dependence of (A~) and related

scalings.

Keywords: amorphous solids, yielding transition, density of shear transformations,

avalanches, elastoplastic models

(Some figures may appear in colour only in the online journal)

Punctuated dynamics is inherent to many out of equilib-
rium driven systems. When energy is loaded at a small and
fixed rate, the nature of the system is such that this energy
is dissipated in sudden bursts of activity typically called slip
events or avalanches. This kind of systems are referred to as
displaying a stick-slip dynamics. Examples include the rela-
tive motion of tectonic plates giving rise to earthquakes [1],
the sliding of charge density waves [2], the driven movement
of a magnetic interface in thin magnetic films [3], the inter-
mittent motion of rain droplets on a windshield [4] and the
plastic rearrangements occurring in amorphous solids under a
slow and sustained strain increase [5]. In all these cases, a sta-
tionary situation is established in which, on average, the stress

* Author to whom any correspondence should be addressed.

1361-648X/21/124001+15$33.00

(or energy) increase during quiescence periods is equal to the
stress (or energy) drop released during avalanches.

Suppose that we drive a system with stick-slip dynamics on
its steady state, and we are interested in the statistics of strain
increases needed to produce a new slip event, for systems of
different sizes. If the system consists on N ‘blocks’ that can be
locally destabilized, one expects that the load needed to trig-
ger the weakest block scales with 1/N. This is, if we double
the system size, the closest instability will be halfway apart
in terms of strain increase needed. Equivalently, if we drive
the system at a small finite rate, the pace at which we observe
slip events doubles when we double the system size. More rig-
orously, if avalanches have a maximum extent that does not
diverge as the system size goes to infinity, then the system is
extensive. The previously mentioned balance between accu-
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mulation and release of energy then implies that if the system
size is doubled, the average load increase that has to be applied
to generate a new avalanche is halved. While this is the case for
most stick-slip phenomena (e.g., friction, depinning, wetting,
etc), the behavior of amorphous solids under deformation dis-
obeys this logic. In the deformation of amorphous materials,
if we double the system size, the rate at which we observe slip
events does not double. It increases, but less; it is sub-extensive
in the system size. In other words, to trigger the next slip one
needs to load more than expected. As a consequence, when the
system finally yields, the slip of a single block is not enough to
compensate the load excess and system spanning avalanches of
plastic events emerge. Therefore, the plastic activity is rarely
confined to localized plastic events and, instead, it is mostly
originated in large structures [6]. This points clearly to the non-
extensiveness of the problem. In fact, if we consider conversely
that the dynamics of the problem produces system size span-
ning avalanches, then a doubling in the system size would not
duplicate the number of avalanches.

It is now well established that the statistics of the mean
strain load (A~v) needed to trigger consecutive avalanches in
the steady state of quasistatically driven amorphous solids has
profound consequences on the criticality of the yielding tran-
sition [7-9]. In particular, its finite-size scaling is expected to
be a manifestation of the distribution of putative shear trans-
formation zones P(x) (x = ¥, — X stands for the local ‘stress
distance’ to the local yielding threshold >.,) and bounds
through scaling relations the possible exponents governing the
avalanche size distribution [5, 10—14]. While consensus on
this scaling being sub-extensive prevails, i.e., (Avy) ~ N~2,
with 0 < o < 1, there have been conflicting views on the value
of « and its justification. On one hand molecular dynamics
(MD) simulations [7-9] of model glasses under quasistatic
deformation support an universal value of « ~ 2/3, valid both
in d =2 and d = 3 dimensions. On the other hand, elasto-
plastic (EP) models for amorphous solids [10, 11] display
dimension-dependent values of «.

Despite large advances in the field, theoretical arguments
have not taken yet in full account the statistical significance
of the (A~) sub-extensivity in the steady state. Such a scaling
has been well accounted as a justification for system-spanning
avalanches of plastic activity in the system; but the fact that
it also implies an inherent discrete evolution for the ‘local
distances to threshold’ x was disregarded. In this work, we
address this issue, presenting an alternative and consistent pic-
ture for the finite-size scaling of x,i, = min; x;. Standing on
the ground provided by previous works [15—18], we inter-
pret the evolution of the stress (and thus also x;) in a generic
region of the system as an effective stochastically-driven ran-
dom walk. Working out the finite-size scaling of the relevant
discrete jump in this walk we derive a generic scaling law
(Xmin) ~ N~ with « = 2/3. In doing so, we revisit the sig-
nificance and shape of the distribution P(x), which shows a
finite limit Py = lim,_ P(x) that scales as Py ~ N'~ in the
thermodynamic limit. This scaling occurs independently of the

eventual value of 6 observed at intermediate values of x where
P(x) ~ x” can be fitted.

In section 1 we refresh the subject under discussion in a
mini-review. In section 2 we motivate and perform an analysis
in terms of simple random-walkers problems with exact solu-
tions to understand the effect of discrete steps. In section 3
we rationalize the collective effect of plastic events during
avalanches as an effective mechanical noise with a discrete
step effect on the ‘walks’ of local stresses. In section 4 we
test our hypothesis in extensive simulations of 2D and 3D
elastoplastic models, presenting rigorous finite size analysis
for (xpmin) and P(x) in different cases. Finally, in section 5 we
summarize our results, that we believe allow to construct a con-
sistent scenario for what seemed a priori contrasting results in
literature.

1. Overview of the subject

Let us start by briefly reviewing the main concepts and litera-
ture results on this topic. In essence, one can think of a yielding
material as a fully-connected set of elastoplastic blocks char-
acterized by a local stress X3; or, equivalently, a local distance
to the stress threshold x; = Xy, — ;. These blocks evolve
according to a global load that drives the x; values towards
zero. When a particular x; reaches zero, the block yields,
reaching a new equilibrium position (at some new, positive
value of x ;) while at the same time producing (via elastic inter-
actions) a modification of the values of other x; all across the
system. We say that these are ‘mechanical kicks’ given to the
blocks each time one of the blocks yields. The yielding of
block j may produce (due to the mechanical kicks) the yield-
ing of other blocks in cascade. This is the origin of avalanches
in the system that characterize the dynamics. Because of this
avalanche-dominated dynamics, the stress—strain evolution in
the system has a qualitative form as depicted in figure 1. Once
in its steady state, a driven amorphous solid performs an inter-
spersed sequence of load periods and slip events when the
relevant stress component is monitored. A stationary average
value is expected for the stress on a steady state. On top of
this average value, stress fluctuations contain information on
the physics of the problem. In particular, the average strain
increase of the loading periods (referred to as (A~)) and the
average stress-drop during the slip events ((AXY.)) must be
proportional in a stationary situation (see figure 1), namely

(AS) = B(Ay) (1

with B an elastic constant.

In a quasistatic athermal dynamics, the stress increment that
needs to be applied to trigger a new avalanche is nothing but
the minimum x; across the system, namely x;,. Then,

(Xmin) = (AX). (2)

Further, energy drops, quantifying the energy dissipated during
plastic avalanches, can be easily related to the stress-drops as
(AU) = Sy(Ay)V = 2 (AS)V; where V =L = N is the
system volume and Yy is the global yield stress [7, 8]. In
fact, the starting point of the current discussion can be traced



J. Phys.: Condens. Matter 33 (2021) 124001

E E Ferrero and E A Jagla

A
g
(7))
o
= AX
n
Lmin
Ay

'
strain (7)

Figure 1. Steady-state stress—strain scheme in the quasistatic shear
deformation of an amorphous solid.

back to a series of MD quasistatic simulations [7-9] where the
following system-size scaling laws were verified

(AUY~N° ; (AX)~N© 3)
holding 6 + « = 1, with § ~ 1/3 and « ~ 2/3, both in two
and three spatial dimensions. Also [19] independently showed
compatible results. In reference [8], when thinking on the dis-
tribution of possible plastic events, an ansatz was introduced.
Arguing that the distribution of energy barriers felt in a qua-
sistatic loading protocol should grow as a power-law, it was
proposed for the distribution of local distances to instabili-
ties (x is the generic value of all x; across the system) the
expression

P(x) ~ x°, (4)

for small x and with @ > 0. Then the distribution of xp;,
follows a Weibull distribution

P(xmin) ~ xminﬂ exp (_Nxmine—H) 5 (5)
with its mean value scaling as
(Xnin) ~ NZVOHO, 6)

which provides a justification for the scaling of equation (3),
linking v and 6:
1

Yet, notice that equation (6) does not imply P(x) ~ x’. The
small argument power-law form of the Weibull distribution for
P(xnin) was verified in the statistics of the ‘as-quenched’ state
or isotropic solid state, both in d = 2 and d = 3 dimensions
[7-9]. And it is in fact for this case that the ansatz (4) was pro-
posed [8]. Nevertheless, these pioneer MD simulations could
not easily access the whole distribution P(x), and results where
only presented for P(xyi,) [or P(A7)].

Luckily, soon after, the problem was addressed by EP model
simulations measuring the full P(x) distribution [10]. In there,
a plausible law P(x) ~ x? was found not only in the ‘as-
quenched’ state but also at the critical stress. The P(x) ~ x’
ansatz was subsequently extended to describe also the crit-
ical steady state in EP simulations [11]; and furthermore,

(N

also the transient regime [20] where a statistics of extended
avalanches was equally observed. It was concluded that 6, and
therefore o according to the construction, should be dimen-
sion and system parameter dependent, which was formalized
in an analytic mean-field approach [21]. This theory has the
virtue of formally catching a strain-dependence of 6, a fea-
ture that is observed in the transient regime both in EP [20,
21] and MD [22-25] simulations. In such transient, the values
of 6§ observed are highly non-universal, depending on system
preparation, system parameters and dimension [21, 23, 26].

In the construction summarized in [21], « is expected to
follow the same trend as @ all the way from the ‘as-quenched’
state to the steady-state, keeping the relation o = 1/(1 + 6),
and binding « to be also highly non-universal. Nevertheless,
one naturally expects 6 and « to stop depending on strain in the
steady-state, and indeed the literature has collected from the
beginning evidence for such expectation [8, 10, 11]. Moreover,
we have recently showed that in that limit those exponents are
model-independent [15] for a large set of EP model rules; they
do depend on dimension though. So, at some point the varia-
tion of o and 6 with strain should vanish. How that happens,
may be a matter of theoretical discussion itself. For the time
being, we will focus on the limit of large strains where a self-
consistent and stationary stick-slip phenomenon is expected to
occur.

Interestingly, in contrast with the case of ‘as-quenched’ sys-
tems, the relation « = 1/(1 + 0) does not seem to hold so well
in the numerical results of the steady-state in EP models. For
example, in [11] @ is reported to be ~ 0.57 and ~ 0.35 respec-
tivelyind = 2 and d = 3, while « results form the x,; , scaling
in ~ 0.67 and ~ 0.79 for those cases [27]. More recent EP
simulations [28] show « ~ 0.675 combined with § ~ 2/3 in
d = 2. And in [15] we have observed o ~ 2/3 and 6 ~ 0.75
for six different d = 2 EP models, pushing the relation o =
1/(1 + 0) even further away from validity. The apparent viola-
tion of such relation in the steady state is accompanied by two
related observations. First, it is well known from the begin-
ning of this discussions that P(xpipn) ~ (xXmin)? does not show
up in the steady-state [8, 10]; in fact that law, valid for the ‘as-
quenched’ state, is rapidly suppressed as soon as the applied
stress is finite [22, 23]. Secondly, recent numerical results in
both MD simulations [25] and EP models [15, 28] have con-
sistently made evident that in the steady state P(x) displays a
plateau at small values of x (a non-zero base value, unmistak-
able in a double logarithmic plot P(x) vs x), and suggested that
the finite-size scaling of (x,i,) can be dominated by the behav-
ior with system size of the finite asymptotic value of P(x) at
vanishing x rather than by the exponent 6.

What seems to be clear, at least, is that the plain assumption
P(x) ~ x?, which was somehow inherited from the ‘as-
quenched’ phenomenology and carried by for all values of
strain, is insufficient in the steady state. Nevertheless, for
instance, a scaling relation based on equation (7), and linking
the exponents 7, dr that describe the distribution of avalanche
sizes with the exponent 6 (namely, 7 = 2 — 1% d%) has been
largely adopted in the EP models literature [5, 12, 14, 29],
always accepted without further justification and relying some-
times on generous error bars for the exponents. Something is
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missing in the understanding of what controls «, which might
cause that even the latter relation among exponents should be
revised. In this work we address the issue, admittedly limiting
ourselves to the steady-state case, were we expect universal
values of « [8, 15, 22].

1.1. A mean-field approach to yielding

In [21], Lin and Wyart extending a work by Lemaitre and Car-
oli [30] presented a mean-field approach which is based in
the assumption that the mechanical kicks produced by yield-
ing sites on every other site can be taken from a given dis-
tribution defined once and for all, independently of the state
of the system, and, more importantly, that this distribution is
heavy-tailed. Based in the instantaneous values of the local
‘stress-distances’ to threshold x; = >y,; — X;, the mean-field
dynamics can be described as follows. If at time # the block j
yields (reaches x; < 0), it is re-injected at a positive value of
x;j (e.g. x; = 1) and the rest of the blocks suffer mechanical
kicks &; taken form a distribution w(¢;) (see equation (9)) with
zero mean (§;) = 0,

xjt+1)=1,

1= x,(0) ®)
xit+ 1) =x(0)+ & N_1°
where the last term grants stress conservation and in this case
the re-injection point has been chosen to be x = 1.

A highly distinctive feature of yielding phenomena lays in
the fact that the mechanical noise distribution w(¢;) comprises
both positive and negative values. This feature has its roots in
the Eshelby response observed upon plastic events in amor-
phous materials and described in appendix A. Once this is
guaranteed, these mean-field models behave qualitatively like
elastoplastic models of amorphous solids [5]: there is a global
yield stress Xy such that for ¥ < Xy the dynamics eventu-
ally stops, corresponding to the solid phase. For, > > >y the
dynamics does not stop and is characterized by a global strain
rate. The dynamics therefore can be rationalized as ‘random
walks’ of the elastoplastic blocks in the x-coordinate, with an
absorbing boundary at x = 0 [21], as qualitatively depicted
in figure 2. This representation of the yielding phenomenon
allows us to start by analyzing simple random-walk processes
and extrapolate conclusions from there, see section 2.

The signed nature of the mechanical noise gives rise to
a density depletion of P(x) close to the absorbing boundary
[11, 15]. In contrast to the case of a purely positive inter-
action among sites where each destabilized block tends to
destabilize the others, the signed kicks allow some blocks to
escape the boundary and survive longer without yielding. This
is the hand-waving argument for the existence of a pseudo-
gap P(x) ~ x? with § > 0. Formally solving the stochastic
problem of equation (8), Lin and Wyart concluded that 6
depends continuously on the applied shear stress, non mono-
tonically and without signs of universality at the yield stress.
The latter observation leaves little room for the expectation of
universal exponents among different EP models, not to talk
about MD simulations. We will contrast this view.

absorbing <::|
boundary )
o @) external drive &
I /
T o Qo
@ | @ ) ) Q@ @ —
Zj > iy  Tig Lig io  Liy L

Figure 2. Schematic wandering of the x; values. The external drive
pushes everyone towards zero (). When x; yields, it is re-injected
@ at a positive value of x and all the remaining x; receive kicks &;
D). These kicks can be either positive or negative and of different
intensities (as illustrated by the arrows’ different colors and lengths),
according to the prescribed distribution w(). The signed nature of
the mechanical noise allows the system to ‘forecast’ the boundary
[11] and creates a density depletion of P(x) close to x = 0.

1.2. Alternative views

The mean field construction in [21] is based on the assumption
of a mechanical noise w(&) of the form

w(&) ~ €)

(9
in the particular case of p = 1, that the authors claim is the
only value with ‘physical meaning’ to be expected to occur.

The necessity of the particular value g =1 has been
recently questioned [15-17]. In particular, it was argued the
assumption g = 1 in equation (9) is not in agreement with
the observation of sub-extensive avalanches dominating the
plastic activity in the quasistatic limit [15, 16]. Other val-
ues of p with 1 < g < 2 acquire physical meaning after the
mechanical noise is properly redefined (see section 3). And,
in fact, a value of p ~ 3/2 was found to be consistent with
the mechanical noise sensed numerically in six different EP
models in two dimensions [15]. Recently, the physical case of
1 < p < 2 has been also addressed in [31] both for the aging
and steady regimes, finding no reasons to discard it. Interest-
ingly, the mean field theory of [21] yields a well defined value
of @ = p/2 when 1 < p < 2, independent on other param-
eters. Yet, a uniquely-defined value of § = /2 would still
fail to explain through equation (7) the value of o observed in
both MD and EP simulations. Remarkably, it has been recently
observed quite clearly in both EP [15, 28] and MD [25] simu-
lations that the true shape of P(x) at small values of x deviates
from a pure power-law ~ x, and has a finite limit

Py = lim P(x) # 0. (10)
x—0

Namely, for any finite system size, P(x) has a plateau [when
P(x) is presented in a logarithmic plot] at small enough x. As
we will argue in the following, the plateau in P(x) is originated
in the discrete nature of the mechanical noise that produces the
‘kicks’ felt by x;. These kicks (that we consider to be gener-
ated by extended plastic avalanches elsewhere in the system)
push each x; to perform a (non-Gaussian) random walk. In
this scenario, it is the system size scaling of Py what domi-
nates the scaling of (xui,) and controls the values of o and
0 in equation (3), which now turn to be compatible with the
independent exponent § = 11/2.
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In the following, we elaborate on this picture. Our work
deals largely with providing analytical arguments and numer-
ical support for the system size dependence of Py and (xyin)
and conciliates them with the existence of a well defined value
of 6 that indeed describes an intermediate region of x values
where P(x) ~ x?.

2. Simple random walks and the P(x) plateau

We analyze first a simple case. Consider a variable x; per-
forming a random walk in the interval [0, 1], with absorbing
boundary conditions. When x; moves out of the interval, it is
‘absorbed’ and re-injected in some random way [27]. In the
case of a continuous time random walk (a Wiener process),
and when the reinjection is done proportionally to the local
value of the probability, the form of the distribution of x; val-
ues observed along time in the steady state can be analytically
computed to be P(x) = g sin(7x). For small x it behaves as
P(x) ~ x,i.e. 8 = 1. If we consider N variables (N > 1) per-
forming the same random walk, the minimum among them
will be in the region in which P(x) is linear, and we will have
P(xnin) ~ Xnin CXP(—NXminZ), and <xmin> ~ N_l/z-

The random walks that we introduced in the previous
section to describe the phenomenological dynamics of yield-
ing are inherently discrete, and one needs to investigate the
consequences of this fact on P(x). In fact, for a finite step ran-
dom walk, although the overall form of P(x) is the same as
before, there is a small correction at small x that depends on
the step size, and has a strong effect on the value of x;,. Letus
think for a moment of a particle performing a discrete random-
walk characterized by a step that is Gaussian-distributed, with
a dispersion o. Assuming the particle is at some position xg
at a given step, the next jump makes x to be distributed as
P(x) ~ O(x)O(1 — x) exp[—(x — x9)*/20?], where the Heav-
iside functions © appear because of the absorbing boundary
conditions. We note that the value of P(01) is finite. It turns
out that this effect remains in the full solution for the station-
ary form of P(x). So, the discrete nature of the steps taken by x;
suffices to explain the finite limit of P(x) as x — 0. In figure 3
we see the distribution of P(x) for Gaussian random walks with
different magnitudes of the average elementary step, namely,
different width o of the Gaussian ‘kicks’. Figure 3(a) shows
the stationary distributions in lin—lin scale, figure 3(b) shows
them in log—log scale, and the scaling proposed in figure 3(c)
shows that the value of Py is proportional to o.

The situation is conceptually identical in the case in which
we consider generalized RWs with a non-trivial Hurst expo-
nent H; this is, random walks generated by jumps & drawn from
a heavy-tails distribution of the form

1
w) ~ —

, 11
glat! ()
for large |¢| with 1/2 < H < 1. Note first of all that in this
case, the ‘typical jump’ or distribution width o cannot be
defined as being variance of the distribution because of its
heavy tails, but it can be alternatively defined as o = {|£|). As

P(x)

0 0.2 0.4 0.6 0.8 1

A X

10- — ‘ L - ‘ LI ‘ LU ‘7

10° 10* 0% x 10°

4 E\ TTTTmT ‘ T TTTTmT ‘ T T TTTmr ‘ TTTTTmr // ‘ E

10" (©) c . #1

L o910 % i

g § o—a 10’3 vﬁafﬂb §
o 1)

L o J

e st Y ~ X 3

100 LU E ‘ LU - ‘ LU ‘ LU ‘ ]

10t 10° 10 10° x/g 10"

Figure 3. Numerically determined probability distribution for a
variable x performing a standard (Gaussian) RW in the interval

(0, 1) with absorbing boundary conditions and random reinjection.
Different curves correspond to different values of the width of the
single step distribution, as indicated. (a) Linear scale. (b) Log scale
to emphasize the behavior at low x. The straight line shows the
expected asymptotic limit for ¢ — 0. In (c) the axis are rescaled
with o to show that the value P(0) scales as o.

it was the case for a Gaussian variable, in the limit of van-
ishingly small jumps (i.e., ¢ — 0) RWs, the form of P(x) for
x close to zero is still expected to be P(x) ~ x?, where now
0 = 1/(2H) [21]. Yet, for finite o, a finite value for Py appears,
as shown in figure 4 for H = 2/3. For concreteness, in this
numerical example we have taken the distribution w(§) to be
given by equation (11) if [£| > &,, and w(§) = 0 if [£| < &,.
This distribution has a width o = (|£|) = £,/(1 — H). We see
that the limiting value of Py as a function of o scales as
Py ~ o>/* (figure 4(c)). In the generic case with 1/2 < H < 1,
Py scales as

1/QH) , ;6

Py~ o (12)

This can be justified by noticing that close to x = 0, o is the
only possible scaling quantity with the same dimension as x.
Then we can write

P(x) = Pof(x/o) 13)

with f(u) ~ 1 for u < 1. On the other hand, for x > ¢ (but
still ‘small’) we must have P(x) ~ Cx” with C independent of
o, therefore implying equation (12). In other words, o marks a
scale crossover below which the distribution of x values tends
to a constant [32].

Finally, notice that everything we have said for the steady
state distribution P(x) populated along time is also true if we
populate the distribution with the x; values of many indepen-
dent walks in their steady state.
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Figure 4. Probability distribution for a variable x performing an RW
with Hurst exponent H = 2/3 in the interval (0, 1) with absorbing
boundary conditions and random re-injection. Different curves
correspond to different values of the width of the single step
distribution. (a) Linear scale. (b) Log scale to emphasize the
behavior at low x. The straight line shows the expected asymptotic
limit for o — 0. In (c) the axis are rescaled with o to show that the
value Py scales as o—/* (c—'/?" for a generic H).

2.1. N random walks without or with drift

Let us consider then N independent random walkers subject to
the following protocol. Now, starting form a condition where
every x; is in the interval (0, 2) we look for the minimum x;, that
we indicate as xy;,. Every site is shifted by an amount —x; .
The site resulting with x; = 0 is re-injected in the box at x; = 1
and everyone updated by a (randomly) signed random quantity
¢ taken from a distribution similar to equation (11) (u = 1/H)

A 1

w(§) = VNW’ (14)

but with upper and lower cutoffs set to &, = (24/ ,u)i and

1

&o=02A/ ,u)iM;ﬁ for it to be normalized [21]. Importantly,
here My is an N-dependent parameter, frequently chosen as
N itself (see [21]). In the simulations of this toy model we
will use My = 1/xpi, for reasons that will be clearer later on
[33]. Every site resulting in x; < 0 (and eventually in x; > 2)
after the random kicks is also re-injected at x; = 1 (but not pro-
ducing further kicks). The N walkers feel these kicks indepen-
dently, yet they are drifted globally by —x,;,, after each kick
update. In order to clearly identify the effect of such global
drift, we will also analyze the case where we avoid the global
drift step and simply: re-inject the site with the minimum x;,
give random kicks to everyone and further re-inject those that
go out of the box.
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Figure 5. Probability distribution populated by N variables x;
subject to a dynamics of random kicks taken from a heavy tailed
distribution like the one in equation (14), with Hurst exponent
H =2/3 and A = 0.1. Sites absorbed at the boundaries are
re-injected in x = 1. Different curves correspond to different
o~ M&l/ "~ N™%9 left: without drift: (a) raw-data, (c) rescaled
with o to show Py ~ o~ /2 Right: with drift. (b) Raw-data,

(d) rescaled with o.

In both protocols, with and without drift, a steady state is
established after a transient and the resulting P(x) distributions
are shown in figure 5. We can see that the drift couples the
dynamics of the walkers and produces the effect of a ‘belly’
on the curves that delays the decrease of P(x) as we sense x
decreasing. The choice of the parameter A now becomes rel-
evant. If A is small, the drift effect overtakes good part of the
P(x) distribution and it masks the power-law regime which
gets difficult to determine, forcing us to simulate very large
systems (or very small o). If instead A is big enough (closer
to 1) the drift effect is much diminished (data not shown). In
any case, when a reasonably large power-law region is granted,
the 0 exponent is preserved for any A, 6 = /2 provided that
1 < p < 2. Notice that, despite this ‘belly’ effect, the exis-
tence of a plateau at small x is unchanged, and the predic-
tions Py ~ o still holds, as can be seen in the data collapse
of figures 5(b) and (d).

The dynamics that we have just described can be though as a
mean-field model for a system of EP blocks with local thresh-
olds where each of them feels an external drive and a noise
represented in w(§). We will now analyze a spatially extended
system of driven interacting blocks in this context.

3. Effective mechanical noise of an interacting
system and the P(x) distribution

Let us imagine a coarse-grained representation of an amor-
phous material under deformation, represented by a scalar
stress 2; on each block and local yielding thresholds ¥yy,;. The
variables of interest will be the local distances to threshold
X; = X — 2;. Our argumentation line is based on the anal-
ysis of the mechanical noise felt by a given site of such a
system, caused by the plastic activity elsewhere and governing
the ‘wandering’ of x;.

For the results of the previous section to be applicable to
the present case, this noise must consist ideally of indepen-
dent, uncorrelated kicks. As previously mentioned, references
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[21, 26] present a mean-field model considering kicks of a
mechanical noise generated by single Eshelby events. We will
refer to these kicks generated by single sites as ‘elementary’
kicks. The approximation of reference [21, 26] describes quali-
tatively well the overall phenomenology observed in numerical
simulations, but fails in predicting the exponents observed, at
least below d = 4. This discrepancy was indeed ascribed to the
presence of ‘dimensional effects’ or correlations between the
elementary kicks produced in different positions of the system.
We believe that the quantitative predictive power of this kind of
analysis can be improved, still keeping the ‘mean-field” char-
acter of the approach, by noticing and taking into account that
elementary kicks are not independent. Elementary kicks pro-
duced by sites that participate of the same avalanche are highly
correlated among them, but those from different avalanches are
not. This fact allows us to build a mean-field approach based
on independent non-elementary kicks. One possible choice is
to define them as the integrated kicks given by avalanches,
that in the quasistatic limit are by definition uncorrelated
events.

The fact that the uncorrelated mechanical noise under con-
sideration is produced by avalanches as a whole is the reason
why now £ in equation (14) can be different from the value
1 = 1 that was obtained considering the effect of hypotheti-
cal uncorrelated elementary kicks instead [21]. Actually, this
alternative approach of avalanche-level noise was already fol-
lowed in [15, 17]. Simulations of different EP models in two
dimensions produce in a test site a noise characterized by a
Hurst exponent H ~ 2/3; which from the point of view of the
mechanical noise is equivalent to consider that such noise is
taken randomly from a distribution like equation (14) with
i~ 3/2. With that being proved to be effectively the case
for a fully interacting system [15, 17], we cannot expect any-
thing different for its full distribution P(x) than the features
discussed in previous sections.

3.1. Finite size scaling of the P(x) plateau

The mechanical noise represented by equation (14) contains as
a fundamental parameter the value of p (or H = 1/p). A sec-
ond property of the distribution that has an important physical
impact isits ‘width’ o. In particular, we are interested in how it
scales with system size N. The lower cutoff of the distribution

1
&0 =02A/ M)IL'M;’_’ is related to the system size and fixed by
normalization. If 1 < g < 2, the width ¢ can be shown to be
proportional to &3, and so
o~ My (15)
It will be the finite-size behavior of the lower cutoff in w(§), the
noise produced by the far away plastic activity, what will dom-
inate the scaling of interest. There is also an upper cutoff for
the kick distribution, &, but that is related with the strongest,
nearest plastic events, and independent on the system size
[21, 26].
We have shown in the previous section that any finite step
random walk process of a variable x with absorbing bound-
aries, subject to such a random noise with 1 < p < 2 implies

that in the steady state

P(x) ~x" forx>o (16)

P(x) ~ o’ for x = 0. (17)
where§ = /2, and o is the ‘width’ of the distribution w(§), as
previously defined. For instance, possible functional forms for
P(x) at small x are P(x) ~ ¢’ + x? or P(x) ~ (0 + x)’. Fur-
thermore, we have shown that N random walkers, coupled by
a common global drift generate the same limiting form of P(x)
asx — 0.

The missing ingredient to make connection with the actual
mechanical noise felt by a given block in an amorphous solid
is to work out the explicit dependence of My in equation (14)
on the system size N, and use it to calculate the scaling of
o (equation (15)) and thus the N-dependence of {xi,). Note
that the approach of [21, 26] uses My = N which implicitly
considers that each of the N sites produces independent kicks
on the generic block i, perturbing x;. We would like to stress
here that this is clearly not realistic. Furthermore, in careful
consideration, it goes itself against the basic feature of yield-
ing phenomena displaying size-spanning avalanches and sub-
extensive scaling for the rate of plastic events. Using My = N
and p =1 in equation (14) implies somehow extensivity if
kicks are supposed to be independent. Instead, we think on the
total noise produced by one avalanche. Among the marginal
kicks that a site receives (the ones that it almost fail to catch
because of working in a finite system N), the dominant one is
not the kick coming from a single site at the maximum pos-
sible distance, but the largest possible kick coming from such
a distance. That is, a kick coming from the largest avalanche
at the largest distance. If equation (14) represents the distri-
bution of kicks generated by individual avalanches in the sys-
tem, the value of My must be chosen in accordance with this
interpretation.

The dependence of My on system size N can be worked out
as follows. Consider two systems with different sizes N; and
N, > N, and suppose that we want to compare the number of
kicks of intensity ¢ produced onto some reference site when
a fixed (long) deformation strain is applied to the system. The
Eshelby interacting kernel decays in space as ~ 1/r¢, and this
implies that increasing the system size from N; to N, > N
does not produce new large kicks [34], but instead increases
the number of small ones, those generated at large distances in
the system with N, sites. This means that if we plot the density
number of kicks observed at a given site as a function of the
kick magnitude, we would obtain a plot as the one qualitatively
depicted in figure 6(a). The portion of these curves following
the 1/]£[#*! law will be mostly indistinguishable for the two
system sizes. Now, in order to plot the probability distribu-
tion w(&), as shown in figure 6(b), it is clear that we have to
divide by the total number of avalanches (kicks) that occurred
in each case. This is why My in equation (14) must be consid-
ered to be proportional to such a number. In other words, My
and the average size of avalanches in the system, noted S, must
be related through

My ~ NS '~ (AX)! (18)
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Figure 6. (a) A schematic plot of the number density of kicks Z of a
given intensity £ observed in systems of two different sizes N, and
N, > Nj. The two curves differ below the small size threshold &
but are coincident in the heavy tail part, for large £. (b) The two
curves in (a) normalized to become the probability distribution w(§).
The normalizing factor is the number My of avalanches that occur in
the two systems under the same increase of external strain.

N

(which, together with equation (2) justifies our choice for
My ~ 1/xpin in the toy model of the previous section 2.1).
Now, collecting the results of equations (2), (15) and (18) we
arrive at the important result [35]

o ~ (Xmin)' " (19)
Introducing this into equation (17) we get
Py~ o’ ~ (xnin)'/?, (20)

since, for I < p < 2,60/ = 1/2[21]. Remarkably, this result
is independent of 1 in such range.

We are now only one step away from our general scaling
results. As mentioned before, recent results in simulations of
different EP models [15, 28] and also in MD simulations [25]
have shown that (i) a plateau exists for P(x) at vanishing x, but
also that (ii) (xuin) shifts towards the plateau region of P(x)
as the system size N is increased. This can now be analytically
justified: from (16) and (17) the crossover between the plateau
and the power-law region is expected at Xcyoss =~ 0. Com-
bined with equation (19), this provides Xcross ~ (Xmin)'/*.
For any p > 1, this tells that (x,;, ) becomes lower than xcyoss
for large N. In practice, crossovers can be very broad, yet, in
the limit N — oo the following relation holds

(Xmin)Po =~ 1/N. 21)

Using equations (20) and (21) we finally obtain the two impor-
tant predictions:

(¥min) ~ N7, (22)

and

Py~ N'/3. (23)

Notice further that if we assume P(x)~ Py + x, using
equation (20): P((xXpin)) ~ <xmin>1/2 + (Xnin)?. And, pro-
vided § = /2 > 1/2, the second term becomes negligible
over the first when (x,;,) is small enough. We then could also

expect a good ansatz to be:
P(<~xmin>) ~ <~xmin>l/2~ (24)

Followed up from equation (20), the latter would interchange
Py by P({xnin)) in every subsequent expression. In the limit

N — oo both formulations are equivalent, since we expect
P({xnin)) to be part of the plateau and identical to P,. Notice
nevertheless that equation (24) (and the ones derived from it)
may work well even before reaching that limit.

The scalings provided by equations (22) and (23) (or alter-
natively P({xmin)) ~ N~'/3) is quite generic, as it does not
depend on the actual value of p neither on the dimension
of the problem. Even more, it is highly stimulating, since it
agrees with the original observations of the (x,;i,) scaling in
MD simulations [7, 8] both in d = 2 and d = 3. Yet, there are
assumptions implicitly made in their deduction that can limit
their validity. For instance, our construction does not account
for anisotropy effects on the dimensions composing the sys-
tem, which could affect the scaling of any observable with the
global system size N. Such an effect appears clearly when con-
sidering three dimensional systems, as we discuss below. In
addition, equations (22) and (23) do not apply in the case of
a model with a (quenched) random kernel, that we describe in
appendix B, mainly due to the failure of the argument about
the scaling of o with N. In the next section we test the predic-
tions of equations (22) and (23) in EP models in dimensions
d=2andd = 3.

4. Elasto-plastic models in 2 and 3 dimensions

We now present results of quasistatic simulations of spatially
extended EP models. We will limit ourselves in particular to
the Picard’s model [37]. Details about model definition and
simulation protocols can be found in the appendix A, and data
was produced with essentially the same codes used in [15].

4.1. Two-dimensional systems (2D)

We start with the d = 2 case. Figure 7 shows the distribution
P(x) for different system sizes N = L x L. We have collected
the values of x = X, — X (see appendix A for parameters
definitions) from every block in the system for several configu-
rations in the steady state right after an avalanche has finished
and before loading the system to the next avalanche. As dis-
cussed in previous sections, P(x) displays—also in this fully
spatial model—an excess of probability at x = 0, evidenc-
ing the occurrence of a naturally emerging discrete step for
the wandering of the x values. Already from the upper panel
(figure 7(a)) it is evident the settling of a system-size depen-
dent plateau at x — 0. This plateau occurs systematically at
smaller values of x as L increases. The form of P(x) has more
structure than in the random-walk experiments of section 2.
Now the crossover region between the power-law regime and
the plateau is broader, the power law range is shrunk due to
the natural existence of a global drift, and for small systems
P(x) even displays an ‘S’ shape before cutting-off when x
becomes order 1. Yet, we can identify for the largest system
size a power-law regime spanning two orders of magnitude in
x ([~ 8.107*, ~ 8.1072]) in excellent agreement with x? with
6 = 0.75 (the value expected when p = 3/2 in the discussion
of section 3). Let us now check the validity of our predictions
in equations (22) and (23). In figure 7(b) the same data of panel
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Figure 7. Distribution of local distances to threshold P(x) in the
quasistatic driven steady state of Picard’s 2D model. (a) The P(x)
distributions. Different linear system sizes L = +/N are represented
with different colors/symbols as declared in the label. Pink crosses
indicate the location of (xy;,) for the different system sizes.

(b) P(x)N'/3 vs xN?/3 testing the scalings of equations (22) and (23).
(¢) P(x)N'/3 ys xNU/3/075 1o preserve the power-law regime ~ x?
with @ = 0.75 observed in the main plot at intermediate values of x.

(a) is plotted as P(x)N'/3 vs xN?/3. The magenta crosses indi-
cate the position [xyin, P(Xnin)] on each P(x) curve [36]. The
coincidence of the horizontal coordinate of these points is the
indication that equation (22) is very well satisfied. According
to equation (23) we also expect that the plateaus of all curves
in figure 7(b) level up. We see that they do but not perfectly.
Instead, note that the values of P(x) at x = (xyin) (i.e., the
vertical coordinate of the crosses) do become coincident in
figure 7(b), fulfilling better the combination of equations (22)
and (24)

<xmin>P(<xmin>) ~ l/N

Figure 7(b) is built to display the combined scaling of (xpin)
and Py [or P({xuin))]. If instead we want to get a collapse
of the power-law range of the P(x) distribution for differ-
ent system sizes, we must preserve the power-law exponent
in the transformation. This is done in figure 7(c) where we
plot P(x)N'/3 vs xNU/3/075 " according to the observed 6 ~
0.75. Following our generalized mean-field picture the value
0 ~ 0.75 observed in the 2D EP model corresponds to a
mechanical noise with a Hurstexponent H = p~' ~2/3 (u =
260 ~ 3/2). A direct characterization of the mechanical noise
to verify this value was already presented in [15, 17], showing
a concurrence of different two-dimensional EP models around
the Hurst exponent H ~ 2/3. Furthermore, very recently com-
patibility with p ~ 3/2 was also reported in MD simulations
[25].

In figure 8 we show the values of (xyin), P({Xnin)) and
Py (estimated from the curves in figure 7) as a function of
N = L?. Dashed straight lines are displays of the exact power-
laws N~%/3 and N~'/3, not fits. We can see that the prediction of
equation (22) work remarkably well and equation (25) accom-
panies it perfectly. The original prediction for the scaling of
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Figure 8. Dependence of (xyiy), Po and P((xyin)) with system size
N for 2D Picard’s model.

Py (equation (23)) is also good (as could be seen in the col-
lapses of figures 7(b)—(c)), but we can also notice that Py is
slowly merging with P({xui,)) as system size increases, and it
is indeed when N — oo when we expect them to be equal and
equation (23) to hold.

4.2. Three-dimensional systems (3D)

Now, let us discuss the three-dimensional case. Contrary to the
2D case, where the few interaction kernels that one can choose
(corresponding to the different kind of volume-preserving
applied deformations) are symmetric under the exchange of
g, and gy, in 3D the many different possibilities for choosing
the elastic kernel all are non-symmetric respect to the per-
mutations of ¢, g, and ¢,. The precise symmetry of the six
independent deviatoric modes in 3D can be seen for example
in [39]. The results we present here correspond exclusively to
the kernel shown in equation (A7), where the way in which the
z dimension enters differs from that of x and y. In figure 9 we
show data similar to that in figure 7 but for the d = 3 case. We
can first observe in the raw data of figure 7(a) that the deter-
mination of the # exponent is more ambiguous than in d = 2.
At intermediate values of x, say ~ (0.005-0.1), a power-law
region can be visualized and it has an exponent § ~ 0.35-0.37,
as reported in previous works [11, 14]. Yet, such a value for 6
would imply p = 26 ~ 0.70-0.74 < 1 and therefore H > 1.
In that case, according to [21] the drift becomes dominant and
we cannot expect the arguments related to the survival proba-
bility of x close to x = 0 to hold. Notice nevertheless that, for
the largest system sizes, another power-law regime at smaller
x ~ (107*=1073) is insinuated. We will come back on this
when discussing systems with different aspect ratios, but let
us advance that such power-law with a steeper slope would
represent a more consistent value for 6 in d = 3.

In any case, let us now discuss scalings for the data in
figure 9. In figure 9(b) we see that the N dependence of (xy;n)
an Py follows a power-law behavior like the one predicted
by equations (22) and (23) but with clearly different expo-
nents. Actually, the observed scaling is (Xpin) ~ N =79 and
Py ~ N~2/°_ Using these values we rescale the P(x) data to
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Figure 9. Distribution of local distances to threshold P(x) in the
quasistatic driven steady state of Picard’s 3D model. (a) The P(x)
distributions. Different linear system sizes L = G/N are represented
with different colors/symbols as declared in the label. Pink crosses
indicate the location of (xy;,) for the different system sizes. (b)
P(x)N*° vs xN?/3 testing the scalings of equations (22) and (23).
(¢) P(x)N?/ vs xN®/9/037 to preserve the power-law regime ~ x
with § = 0.37 observed in the main plot at intermediate values of x.

obtain figure 9(b). Again, notice that as in the case of d = 2 the
collapse of the points [(Xpin), P({Xnin))] (equations (22) and
(24)) is better than the scaling of the plateaus, which are even
hard to define. If we further consider the power-law regime
with an exponent # ~ 0.37 we can do as in the d = 2 case and
produce figure 9(c), for completeness.

In figure 10 we show the values of (xpin), P({Xnin)) and
Py (estimated from figure 9) as a function of N = L* for
d = 3. Dashed straight lines simply display the power laws
~ N=%° and ~ N~7/°, they are not fits. The measured val-
ues shown in figure 10 follow these trends very well. These
values do not coincide with the predictions of equations (22)
and (23). We believe the main reason is that our argumenta-
tion in the previous section implicitly assumed that all spatial
dimensions of the system participate on the same footing. As
we already stressed it, while the d = 2 Eshelby propagator
(equation (A2)) is in fact symmetric against exchange of axis,
this is not the case for the d = 3 propagator (equation (A7)).

We can provide a partial explanation for the values found
for the N dependence of (xyin) and P((xuin)) (or Py) in 3D in
the following way. First of all, notice that for g, = 0 the three
dimensional kernel (equation (A7)) reduces to the two dimen-
sional one (equation (A2)). We will make the assumption that
the non-trivial scaling of (xuiy) is still governed by the finite-
kick walk analysis that we did in section 3, but in which the z
coordinate has to be treated as a ‘dumb’ independent dimen-
sion. This is, let us think on the d = 3 case as a collection of
several d = 2 systems stacked in the z direction, and evolving
in parallel. If we take, L, systems of size L x L and choose
after each avalanche the minimum x among all of them, we
would have a (x,iy,) scaling as

(Xmin) ~ L7431 (26)
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Figure 10. Dependence of (xpin), Po and P({xpin)) With system
size N for (cubic box) 3D Picard’s model.

and

Py ~ L723 (27)

(note that Py turns out to be independent of L,). When L, =
L this leads to the scaling (xpin) ~N~7/° and Py ~ N~2/°
(with N = L?) that we observe in figure 8. In fact, simula-
tions in systems with different L, = L, = L and L. show that
equations (26) and (27) are very well satisfied, as we will see
in the following.

Figure 11 shows the scaling of (x,i,) for different cases.
First, the N = L? case is reproduced from figure 10 for compar-
ison. Then, we increase the system size while fixing L, = L,
and varying only L, (the dimension perpendicular to the shear
plane, that enters in a ‘different’ way than the other two in
the propagator (A7)). This yields a scaling (xpin) ~ N~! con-
trolled by (xnin) ~ L ! since the system size in the other two
dimensions is fixed. Finally, we do inversely and we increase
the system size by growing L, = L, and keeping L. fixed.
This yields a scaling (xp;,) ~ N~/ controlled by a scaling
of (Xnin) ~ L™*3 (equation (26)) for both L, and L,. Notice
that when the system size is increased in this way (at a fix
perpendicular direction to the shear plane) we recover the scal-
ing observed in the MD simulations of [7-9], that shows no
exponent difference between d = 2 and d = 3.

In figure 12 we take a look to the P(x) distributions in these
asymmetric boxes for different aspect ratios. On one hand,
we have fixed L, = L, = 64 and vary L between 8 and 384.
On the other hand, we have fixed L, = 64 and vary L, = L,
between 16 and 512. Notice first that, when L, is the only
changing dimension, the plateau level actually increases, with
a small positive power, and it seems to saturate for large sizes
around Py ~ 0.12. So, the strong (xyi,) scaling decreasing as
1/N, is accompanied by a barely changing Py with N, as we
could have expected from equation (20). These curves for P(x)
have the particularity that they only show a power-law regime
at ‘large’ values of x, and they correspond to an ‘abnormally
small’ value of 0, coincident with the many times reported [11,
14] but never truly justified # ~ 0.35-0.37 in 3D. This 6 value
would point to ¢ < 1, beyond the assumptions used for the
derivation of our scaling arguments.
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Figure 11. Dependence of xy;, with system size N for the 3D
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and arrows indicating the strain deformation that gives rise to the
propagator that we use for d = 3 in this work (equation (A7)).
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Figure 12. P(x) for Picard’s 3D model with different aspect ratios.
For the largest system size of each size grow scheme (varying

L, = L, or varying L), the power-law regime visible at the smallest
values of x is marked by a straight line to guide the eye.

Now, if we analyze the curves when varying L, = L, at
fix L, things change dramatically. First, the plateau level is
‘well behaved’ decreasing as N increases. In fact, a reasonable
Py ~ N~%% accompanies the scaling of xn;, shownin figure 11
for this case. Secondly, the larger system sizes clearly display
a different power-law at intermediate x values, with P(x) ~
x%66 in such range. As it stands closer to the boundary x = 0,
that will be the power-law dominating the system’s dynamics
close to the transition (e.g., the value of the flowcurve expo-
nent 3 [15, 16]). In fact, in d = 3, H = 1/(26) ~ 0.75-0.77
is expected [16], consistent with 6 ~ 0.65-0.66. Moreover,
0 ~ 0.66 suggests a value of =260 ~ 1.33 in d = 3, which
brings the problem back into the range of validity of our gen-
eral assumptions for the derivation of the scalings ((22) and
(23)).

It needs to be stressed that the occurrence of these two
clearly different finite size scalings in 3D—(i) growing the
system in the direction perpendicular to the shear plane
or (ii) growing the system in the directions of the shear
plane—remains as an open issue (see discussion below).

1

5. Summary and discussion

In this paper we have considered the problem of the strain
load A~y needed to trigger consecutive avalanches in the steady
state of quasistatically deformed amorphous solids. In par-
ticular, we studied the finite-size scaling of its mean value
(A~). The values of A~ are intimately related to the distri-
bution P(x) of local distances to instability x; (Av) is simply
proportional to the average value of the minimum x across
the system, namely (Av) ~ (xpin). We have built a theoret-
ical argument starting by simple random walks of x with an
absorbing boundary to show how the effect of a discrete step
induces a finite value of P(x) at the boundary. Then, we stood
on an alternative mean-field modeling approach for the yield-
ing phenomena [15, 17], considering as the physically relevant
case the one in which the mechanical noise is generated by
extended and collective plastic events, leading to a fat tail noise
distribution w(¢) ~ [£]~**+D with 1 < p < 2. The mechani-
cal noise generated by these avalanches has indeed a discrete
nature, and therefore the distribution of P(x) is expected to
acquire a finite value as x — 0, namely P(x — 0) = Py # 0.
More importantly, the discreetness in the mechanical kicks is
not the trivial ~ 1/N finite-system effect, but one that has to
do also with the mean avalanche size in the system (e.g., see
equation (18)). This holds for any 1 < p < 2 and we explic-
itly derive the Py vs N scaling in that case. The scenario is
confirmed by extensive numerical simulations of a classical
elastoplastic model in 2 and 3 dimensions.

Even though the value of Py decreases to zero as N — oo,
and therefore it could be naively considered a finite-size effect,
its behavior with system size happens to be precisely what gov-
erns the scaling of (xi,), and thus of (A~), our quantity of
interest. Our theoretical analysis is able to justify a universal
dependence (A~y) ~ N~ with o« = 2/3, independent of spa-
tial dimension and system parameters, as is actually found in
MD simulations [7, 8]. Moreover, we have no need to assume
a particular shape for the energy barriers [8] in doing so. It is
worth mentioning nevertheless, that, as most of the numerical
literature on the field, our construction assumes so far an ather-
mal system. In this case the dynamics is dominated by the min-
imal value of distance to instability, x,; ,, at every loading step.
A finite temperature in a thermodynamic system (N — oo)
may blur this (otherwise strictly) extremal dynamics. It might
be an interesting problem for future works to analyze how our
predictions are impacted by a finite temperature.

In the numerical results presented here for EP models in
d = 2 the value @ = 2/3 is clearly obtained. However, the cor-
responding results in symmetric (i.e., cubic) d = 3 systems
display a different value o ~ 7/9. We have identified a pos-
sible reason for this discrepancy in d = 3 in an unforeseen
(Xmin) scaling dependence with the linear size of the sam-
ple along different directions relative to the externally applied
shear. In contrast with the d = 2 case, the interaction kernel
in d = 3 is not symmetric in all coordinates. Growing the sys-
tem in the direction perpendicular to the shear plane has an
effect markedly different on (xy;, ), than growing it in the other
directions. By studying d = 3 systems of different aspect ratio
we addressed these multiple scalings, showing that in the case
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in which the dimension perpendicular to the shear plane is kept
fixed, o ~ 2/3 is recovered even in d = 3 EP systems. The
different scalings of (xpin) and Py with the different linear
dimensions of a 3D system can be rationalized by a Gedanken
problem in which the 3D system behaves as a collection of
independent 2D systems. However, there is no basis to expect
that this is actually the way in which a 3D system behaves and
we know that the dynamics of interactions is more complex
than that. The kernel asymmetry might be a weakness of the
EP simplification and non-physically dominant at the end of
the day. This is what one could interpret from the fact that clas-
sical MD results [7-9] maintain the (xp;,) ~ N~2/3 scaling.
Moreover, a recent proposal of ‘augmented’ elastoplastic mod-
els tries to incorporate (among other things) the fact that shear
strain in any direction due to a rearrangement can trigger the
next rearrangement equally well. Successive rearrangements
observed in MD are ‘isotropically distributed’ and not concen-
trated in the strain direction prescribed by the imposed defor-
mation [40]. If the interaction kernel is symmetrized somehow
our predictions equations (22) and (24), turn to be valid in the
elastoplastic 3D case as well. We have checked this so far for
synthetic, non-physical, kernels only (data not shown).

In any case, a definite value of « implies additional predic-
tions on other critical exponents of the yielding transition. For
instance, the avalanche distribution exponent 7 and the fractal
dimension of avalanches dy are linked to « through [11, 15]

do=d —di2 — 1), (28)
(note that this relation is usually written using 6 instead of «,
by applying the extra assumption o = 1/(1 + ), that we con-
sider not justified in the steady state). A unique value « = 2/3
ind = 2 implies d¢(2 — 7) = 2/3. Most of the values reported
in the literature satisfy this relation. In particular, we have
tested for six different EP models [15] df ~ 1 and 7 ~ 1.33.
For d = 3, we must still understand which is the value of «
that we should expect, but dy and 7 could also suffer from an
asymmetry effect if equation (28) is expected to hold.

Finally, all this picture should be compatible with known
results for the as-quenched state; with rigorous power-laws
for P(xnin) and P(x) at small arguments. We believe that the
effective mechanical noise governing the distribution P(x) and
its properties, like the one that defines the finite-size scaling
of (Xnin), must display systematic biases in the non-universal
transient. While we will not venture to link transient values of
w (or H) with 6 in such a regime (which, furthermore, is only
measurable on a given system size for certain ranges of ini-
tial annealing), our guess is that avalanches progressively build
up and their geometry—encoded in dy [11, 20]—varies with
strain, therefore modifying the effective noise, until it reaches
a steady distribution governed by 1 < p < 2.

6. Conclusion

In conclusion, we have provided a novel interpretation of the
finite size scaling of (A~) in the steady state of amorphous sys-
tems under deformation. This interpretation seems to concili-
ate MD simulation results and EP constructions, otherwise in

contradiction in this limit. While the hypothesis of a marginal
stability behavior, rooted in the celebrated P(x) ~ x’ pseudo-
gap, has been proved to hold in the as-quenched isotropic state
of model glasses [7, 8] and still renders important outcomes in
the transient [20, 24], it does not seem to apply ‘as-is’ to the
steady state case. There, at least, the system dynamics is cor-
related at the level of avalanches and this naturally produces a
finite value of P(x) as x — 0, when observing the P(x) distri-
bution in the quasistatic limit, justified on a discrete step for the
effective dynamics of the x values. This behavior of P(x) does
not invalidate the essence of the yielding transition, anchored
in the sub-extensive scaling of (A~)~!; since the level of such
asymptotic plateau at small x is itself dependent on N and is
shown to govern the behavior of (Av) ~ N~¢, independently
on 4.

Some questions remain open, and we hope they will moti-
vate further endeavors on the subject. But we believe that this
is a first step in shedding light on a probable misconstruction
in the field, based in a wrong extrapolation of arguments valid
in the early deformation regime to the steady state case.
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Appendix A. Elastoplastic model and simulation
protocol

EP models are intended to describe amorphous materials at
a coarse-grained-level, laying in between the particle-based
simulations and the continuum-level description [5]. In short,
the amorphous solid is represented by a coarse-grained scalar
stress field Y(r, ), at spatial position r and time ¢ under an
externally applied shear strain. Space is discretized in blocks
(e.g., square lattice). At a given time, each block can be
‘inactive’ or ‘active’ (i.e., yielding). This state is defined by
the value of an additional variable: n(r,f) = O (inactive), or
n(r,t) = 1 (active). An over-damped dynamics is imposed for
the stress on each block, following some basic rules: (i) the
stress loads locally in an elastic manner while the block is inac-
tive. (ii) When the local stress overcomes a local yield stress,
a plastic event occurs with a given probability, and the block
becomes ‘active’ (n(r) is set to one). Upon activation, dissipa-
tion occurs locally, and this is expressed as a progressive drop
of the local stress, together with a redistribution of the stresses
in the rest of the system in the form of a long-range elastic
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perturbation. A block ceases to be active when a prescribed
criterion is met. The auxiliary binary field n(r, f) shows up in
the equation of motion for the local stress Y(r, t), defining a
dynamics that is typically non-Markovian. While the structure
of the equation of motion for the local stresses is almost unique
in the literature, both its parameters and the rules governing the
transitions of n(r) (0 = 1) show a variety of choices.

We define our EP model as a d-dimensional scalar field
X(r, 1), with tipically d =2 or 3, and r discretized on a
square/cubic lattice and each block X3; subject to the following
evolution in real space

X0
-

azi([) .
o

,U/.YeXt + ZG,‘jnj(t) 5 (Al)
J

where 4°** is the externally applied strain rate, and the kernel
G; is the Eshelby stress propagator [41].

It is sometimes convenient to explicitly separate the i = j
term in the previous sum, as

0%i(1) ex (1) 0]
o = AT =g 4y G (0715 (A)
t T — T
J#
where g, = —Gj;; > 0 (no sum) sets the local stress dissipation

rate for an active site. The form of G is G(r,r') = G(r, p) ~
# cos(4y) in polar coordinates, where o = arccos((r — r’) -
Ii(exv)) and r = |r — r'|. For our simulations we obtain G;; from
the values of the propagator in Fourier space G, defined as

4q3q;
=X A3
@+ er (A
for q # 0 and
G0 = —K (A4)

with s a numerical constant (see below). Note that in our
square numerical mesh of size L X L, g%, g7 must be under-
stood as

Ty
gy =2—2cos (Ty)

withm,, =0,...,L— 1.

The elastic (e.g. shear) modulus p = 1 defines the stress
unit, and the mechanical relaxation time 7 = 1, the time unit
of the problem. The last term of (A2) constitutes a mechanical
noise acting on ¥; due to the instantaneous integrated plastic
activity over all other blocks (j # i) in the system.

The picture is completed by a dynamical law for the local
state variable n; = {0, 1}. We define hereafter the rule corre-
sponding to the Picard’s model [37] that we use:

|

where 7o, and 7.¢¢ are parameters and P(Xy;) = 6(Xm; — 1).
In d = 3, the Eshelby kernel for one scalar component of the
deviatoric strain in Fourier space can be written as

(A5)

0—1
0«1

1 .
atrate Tonl if 2 > Y (A6)
atrate T_g,

A4y + @z g+ a2

G3D _
! @+ a4 +a)

(A7)

and the dimensional is

straightforward.

extension of the dynamics

A.1. Quasistatic protocol

For the analysis of avalanche statistics, it is convenient to have
a protocol that allows for the triggering and unperturbed evolu-
tion (no driving) of avalanches until they stop, guaranteed by
a degree of stress non-conservation x > 0 (we use k = 1, as
in previous strain-controlled EP models implementations [14,
42, 43], unless otherwise specified). This is the quasi-static
protocol described here.

Starting from any stable configuration, i.e., no site is active
and no site stress is above its local threshold (n; = 0 and
Y < Xy for all sites), the next avalanche of plastic activity
is triggered by globally increasing the stress by the minimum
amount necessary for a site to reach its local threshold. That
site (the weakest) is activated at threshold with no stochastic
delays; it perturbs the stress values of other sites and the rest of
the avalanche evolves without any external drive following the
dynamics prescribed by equation (A2) (and the corresponding
activation rule) with 4 = 0. The avalanche stops once there
are no more active sites and all stresses are below their corre-
sponding thresholds again. At this point the loading process is
repeated. For each simulation run, data is collected only in the
steady-state.

Appendix B. Model with a quenched random
kernel

In this section we analyze the properties of a model with a
different form of the interaction kernel. Instead of using the
appropriate interaction to describe the properties of yielding,
namely the Eshelby kernel presented in equation (A3), we con-
sider a model in which the G4 kernel takes random values. In
concrete, we use

G, = —RND(q), (B1)

where RND(q) stands for an independent random number cho-
sen from a flat distribution between 0 and 1 for each value
of q. Note that this is a ‘quenched’ random kernel, since the
form of G is chosen once and for all at the beginning of the
simulation [46].

Although this is probably not a realistic model to describe
any physical situation, there are a few reasons that make the
study of this model interesting. The first one concerns its
relation with another version of a ‘random’ yielding model,
namely the Hébraud-Lequeux (HL) model [44, 45]. In its
essence, the HL. model for a system with N sites considers that
every time a single site performs a plastic re-accommodation,
it produces a random kick of finite variance o (witho ~ N~ 1/ 2)
on every other site. Note however that in this case the values
of the random kicks are refreshed at every plastic event [38].
From its very definition the mechanical noise in the HL model
is a standard random walk, corresponding to a value of y = 2.
In the quenched random case we are examining, we must first
understand what are the properties of the uncorrelated mechan-
ical noise felt by a particular target site. The quenched random
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kernel G4 generates values G, that are mostly uncorrelated spa-
tially, and distributed with a finite variance o. This is enough
to guarantee that we will find a value ;4 = 2 (and therefore [21]
6 = 1) as in the HL. model. In addition, the dependence of o on
the number of sites N in the systemiso ~ 1/ V/N, as in the HL
model. Then we can write down the scaling of Py with N from
(the limit of validity of) equation (12), which is independent

of the details of the kernel, as
Py~ N2 (B2)
and also
(¥min) ~ N1/ (B3)

thus finding in the present case a different scaling that the one
given by equations (22) and (23). The arguments that led to
equations (22) and (23) fail here because the scaling of o with
N obtained in equation (19) was based in the conservation of
the number of large kicks when system size is increased (see
figure 6), something that does not occur here because of the
assumed non-decaying nature of the interactions.

We performed simulations with a quenched random kernel
and evaluated the distribution P(x), and the value of (xyin).
The simulations shown here were done in two spatial dimen-
sions, but we verified that exactly the same results are obtained
in three dimensions if the number of sites in the system is
maintained. This is of course related to the fact that in a
randomly interacting model dimensionality plays no relevant
role.

Figure 13 shows the results of simulations with the random
kernel. The upper panel shows the form of P(x) for different
values of N and we can see that the value § = 1 for P(x) ~ x’
in an intermediate range of x is well established as N increases.
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Figure 13. (a) The form of P(x) for system with different number of
sites N in the quenched random kernel case. The dashed line
displays the expected behavior P(x) = C; 4+ Cox onthe N = 2562
data. (b) The scaling of Py and (xpin) with N. Symbols are the result
of simulations. Straight lines indicate the expected ~ N~'/2
dependence.

The lower panel shows the scaling of Py and (xpi,) with N,
where we observe clearly the expected ~ N~/ dependence.

ORCID iDs

Ezequiel E Ferrero ‘= https://orcid.org/0000-0001-8516-6146
Eduardo A Jagla ©® https://orcid.org/0000-0003-4773-2308
References

[1] CarlsonJ M, Langer J S and Shaw B E 1994 Rev. Mod. Phys. 66
657
[2] Fisher D S 1998 Phys. Rep. 301 113
[3] Ferré J, Metaxas P J, Mougin A, Jamet J-P, Gorchon J and
Jeudy V2013 C. R. Phys. 14 651disordered systems/systemes
désordonnés
[4] de Gennes P G 1985 Rev. Mod. Phys. 57 827
[5] Nicolas A, Ferrero E E, Martens K and Barrat J-LL 2018 Rev.
Mod. Phys. 90 045006
[6] Maloney C and Lemaitre A 2004 Phys. Rev. Lett. 93 016001
[7] Lerner E and Procaccia 1 2009 Phys. Rev. E 79 066109
[8] Karmakar S, Lerner E and Procaccia I 2010 Phys. Rev. E 82
055103
[9] Karmakar S, Lerner E, Procaccia I and Zylberg J 2010 Phys.
Rev. E 82 031301
[10] LinJ, Saade A, Lerner E, Rosso A and Wyart M 2014 Europhys.
Lett. 105 26003
[11] Lin J, Lerner E, Rosso A and Wyart M 2014 Proc. Natl Acad.
Sci. USA 111 14382
[12] Budrikis Z, Castellanos D F, Sandfeld S, Zaiser M and
Zapperi S 2017 Nat. Commun. 8 15928
[13] Tyukodi B, Patinet S, Roux S and Vandembroucq D 2016 Phys.
Rev. E 93 063005
[14] Liu C, Ferrero E E, Puosi F, Barrat J-LL and Martens K 2016
Phys. Rev. Lett. 116 065501
[15] Ferrero E E and Jagla E A 2019 Soft Matter 15 9041
[16] Ferrero E E and Jagla E A 2019 Phys. Rev. Lett. 123
218002
[17] Fernandez Aguirre I and Jagla E A 2018 Phys. Rev. E 98
013002
[18] Jagla E A 2018 J. Stat. Mech. 013401
[19] Salerno K M and Robbins M O 2013 Phys. Rev. E 88
062206
[20] Lin J, Gueudré T, Rosso A and Wyart M 2015 Phys. Rev. Lett.
115 168001
[21] Lin J and Wyart M 2016 Phys. Rev. X 6 011005
[22] Hentschel H G E, Jaiswal P K, Procaccia I and Sastry S 2015
Phys. Rev. E 92 062302
[23] Ji W, Popovi¢ M, de Geus T W J, Lerner E and Wyart M 2019
Phys. Rev. E 99 023003
[24] Shang B, Guan P and Barrat J-L. 2020 Proc. Natl Acad. Sci. USA
117 86
[25] Ruscher C and Rottler J 2020 Soft Matter 16 8940
[26] Lin J and Wyart M 2018 Phys. Rev. E 97 012603
[27] As a matter of fact, different values for the exponent 6 are
presented in reference [11] when either fitted from the P(x)
distribution or computed from the ‘extremal dynamics’ (the
scaling of Xnin) through equation (7); ‘a difference presum-
ably resulting from corrections to scaling’ according to the
authors.
[28] Tyukodi B, Vandembroucq D and Maloney C E 2019 Phys. Rev.
E 100 043003
[29] Karimi K, Ferrero E E and Barrat J-L 2017 Phys. Rev. E 95
013003
[30] Lemaitre A and Caroli C 2007 arXiv:0705.3122


https://orcid.org/0000-0001-8516-6146
https://orcid.org/0000-0001-8516-6146
https://orcid.org/0000-0003-4773-2308
https://orcid.org/0000-0003-4773-2308
https://doi.org/10.1103/revmodphys.66.657
https://doi.org/10.1103/revmodphys.66.657
https://doi.org/10.1016/s0370-1573(98)00008-8
https://doi.org/10.1016/s0370-1573(98)00008-8
https://doi.org/10.1016/j.crhy.2013.08.001
https://doi.org/10.1016/j.crhy.2013.08.001
https://doi.org/10.1103/revmodphys.57.827
https://doi.org/10.1103/revmodphys.57.827
https://doi.org/10.1103/revmodphys.90.045006
https://doi.org/10.1103/revmodphys.90.045006
https://doi.org/10.1103/physrevlett.93.195501
https://doi.org/10.1103/physrevlett.93.195501
https://doi.org/10.1103/physreve.79.066109
https://doi.org/10.1103/physreve.79.066109
https://doi.org/10.1103/physreve.82.055103
https://doi.org/10.1103/physreve.82.055103
https://doi.org/10.1103/physreve.82.031301
https://doi.org/10.1103/physreve.82.031301
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1038/ncomms15928
https://doi.org/10.1038/ncomms15928
https://doi.org/10.1103/physreve.93.063005
https://doi.org/10.1103/physreve.93.063005
https://doi.org/10.1103/physrevlett.116.065501
https://doi.org/10.1103/physrevlett.116.065501
https://doi.org/10.1039/c9sm01073d
https://doi.org/10.1039/c9sm01073d
https://doi.org/10.1103/physrevlett.123.218002
https://doi.org/10.1103/physrevlett.123.218002
https://doi.org/10.1103/physreve.98.013002
https://doi.org/10.1103/physreve.98.013002
https://doi.org/10.1088/1742-5468/aa9db2
https://doi.org/10.1103/physreve.88.062206
https://doi.org/10.1103/physreve.88.062206
https://doi.org/10.1103/physrevlett.115.168001
https://doi.org/10.1103/physrevlett.115.168001
https://doi.org/10.1103/physrevx.6.011005
https://doi.org/10.1103/physrevx.6.011005
https://doi.org/10.1103/physreve.92.062302
https://doi.org/10.1103/physreve.92.062302
https://doi.org/10.1103/physreve.99.023003
https://doi.org/10.1103/physreve.99.023003
https://doi.org/10.1073/pnas.1915070117
https://doi.org/10.1073/pnas.1915070117
https://doi.org/10.1039/d0sm01155j
https://doi.org/10.1039/d0sm01155j
https://doi.org/10.1103/physreve.97.012603
https://doi.org/10.1103/physreve.97.012603
https://doi.org/10.1103/physreve.100.043003
https://doi.org/10.1103/physreve.100.043003
https://doi.org/10.1103/physreve.95.013003
https://doi.org/10.1103/physreve.95.013003
https://arxiv.org/abs/0705.3122

J. Phys.: Condens. Matter 33 (2021) 124001

E E Ferrero and E A Jagla

[31] Parley J, Fielding S and Sollich P 2020 Phys Fluid 32 127104

[32] In the simulations presented here the reinjection is made ran-
domly and uniformly in the full interval (0, 1).

[33] We thank D Vandembroucq for pointing this out.

[34] Note that instead of using at each step the latest xyi, to define
the distribution w(&), one could use the self-tuned mean value
Xmin and the conclusions are identical.

[35] In fact the largest kicks are produced by neighbor avalanches,
the coarse-grained lattice description imposes the upper cut-
off of the kick distribution, the minimal distance.

[36] See appendix B for the discussion of a case in which the assump-
tions made to derive this result do not apply, and then equation
(19) does not hold.

[37] Picard G, Ajdari A, Lequeux F and Bocquet L 2005 Phys. Rev.
E 71 010501

[38] xmin is independently computed for each system size as the arith-
metic average of the minimum x values (in the L x L system)
for each after-avalanche configuration in the steady state.

[39] Jagla E A 2020 Phys. Rev. E 101 043004

[40] Zhang G, Ridout S and Liu A J 2020 arXiv:2009.11414

[41] Picard G, Ajdari A, Lequeux F and Bocquet L 2004 Eur. Phys.
J.E15371

[42] Martens K, Bocquet L and Barrat J-L 2012 Soft Matter 8
4197

[43] Nicolas A, Martens K and Barrat J-L. 2014 Europhys. Lett. 107
44003

[44] Hébraud P and Lequeux F 1998 Phys. Rev. Lett. 81 2934

[45] Agoritsas E, Bertin E, Martens K and Barrat J-L 2015 Eur. Phys.
J E3871

[46] It has to be emphasized that when using a quenched kernel
as in this case, there is a stability condition expressed in
the fact that G4 has to be non-positive, otherwise we would
obtain exponentially growing modes. This is why we define
the random kernel in q space. If we define a random kernel
in real space instead, the negativity of G4 cannot be easily
fulfilled.


https://doi.org/10.1063/5.0033196
https://doi.org/10.1063/5.0033196
https://doi.org/10.1103/physreve.71.010501
https://doi.org/10.1103/physreve.71.010501
https://doi.org/10.1103/physreve.101.043004
https://doi.org/10.1103/physreve.101.043004
https://arxiv.org/abs/2009.11414
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1039/c2sm07090a
https://doi.org/10.1039/c2sm07090a
https://doi.org/10.1209/0295-5075/107/44003
https://doi.org/10.1209/0295-5075/107/44003
https://doi.org/10.1103/physrevlett.81.2934
https://doi.org/10.1103/physrevlett.81.2934
https://doi.org/10.1140/epje/i2015-15071-x
https://doi.org/10.1140/epje/i2015-15071-x

	Properties of the density of shear transformations in driven amorphous solids
	1.  Overview of the subject
	1.1.  A mean-field approach to yielding
	1.2.  Alternative views

	2.  Simple random walks and the plateau
	2.1.   random walks without or with drift

	3.  Effective mechanical noise of an interacting system and the distribution
	3.1.  Finite size scaling of the plateau

	4.  Elasto-plastic models in 2 and 3 dimensions
	4.1.  Two-dimensional systems (2D)
	4.2.  Three-dimensional systems (3D)

	5.  Summary and discussion
	6.  Conclusion
	Data availability statement
	Acknowledgments
	Appendix A.  Elastoplastic model and simulation protocol
	A.1.  Quasistatic protocol

	Appendix B.  Model with a quenched random kernel
	ORCID iDs
	References


