
  

Quenched Edwards-Wilkinson model (elastic manifolds in disordered media) 

General Purpose Graphics Processing Units have shaken up the computational scientific community. In many cases, people adopted parallelism with CUDA, before even knowing what was 
exactly MPI or OMP about. As statistical physicists working in condensed matter, with the aim of accelerating our simulations, we have implemented in the last few years some massively parallel 
codes. We present here four examples of ad-hoc models that effectively describe the phenomenology of a physical system at a given scale. We can classify them in two families: (i) lattice based 
Monte Carlo simulations (for classical spin models and electron glasses); (ii) overdamped dynamics of scalar systems (for elastic lines in disordered media and sheared amorphous solids). 
Dimensionality, interaction range, particular dynamics, and other details of the model, determine the parallelization strategy in each case.

Ezequiel Ferrero
Université Grenoble Alpes and CNRS, LIPHY, F-38000 Grenoble, France

A display of GPU implementations in Condensed Matter Physics
four distinctive cases

Contact: ezequiel.ferrero@ujf-grenoble.fr 

q-state Potts model Monte Carlo (classical spins system)

www.ezequielferrero.com 

Coulomb glass Kinetic Monte Carlo  (electrons glass system) Athermal elasto-plastic model (sheared amorphous solids) 

[1] E.E. Ferrero, J.P. De Francesco, N. Wolovick, S. A. Cannas, Comp. Phys. Commun. 183 1578 (2012)
[2] E.E. Ferrero, F. Romá, S. Bustingorry, P.M. Gleiser, Phys. Rev. E 86 031121 (2012)

https://bitbucket.org/ezeferrero/potts
https://bitbucket.org/ezeferrero/potts-glass

[1] E. E. Ferrero, A. B. Kolton, M. Palassini, AIP Conf. Proc. 1610 71 (2014) https://bitbucket.org/ezeferrero/coulomb_glass

[1] E.E. Ferrero, S. Bustingorry, A.B. Kolton, Phys. Rev. E 87 032122 (2013)
[2] A.B. Kolton, S. Bustingorry, E.E. Ferrero, A. Rosso, JSTAT P12004 (2013) https://bitbucket.org/ezeferrero/qew

[1] E. E. Ferrero, K. Martens, J.-L. Barrat, Phys. Rev. Lett. 113, 248301 (2014)
[2] C.Liu, E.E. Ferrero, F. Puosi, J.-L. Barrat, K. Martens, arXiv 1506.08161 (2015) https://bitbucket.org/ezeferrero/ep

Checkerboard scheme (interactions limited to nearest neighbors)

● Pure CUDA C

● Implements Multiply With Carry RNG with 
FRAMESxFRAMES/2 independent generators.

● Computes multiple outputs per thread. Two 
consecutive kernels (black/white) of typically 512×512/2 
threads are launched.

● Comprises the remapping of a two-dimensional stencil of 
four points in order to save memory transfers.
→ Encodes each spin in a byte, allowing simulations 
with q<256 and L2 < available RAM.
→ Uses registers for RNG states.
→ Implements parallel sums (butterfly-like algorithm) for 
averages calculations using shared memory.

Stencil compaction-- Left: an 8×8 checkerboard framed in 4×4 
(red marking), the cells updated by thread t0 are singled out, we 
also marked the neighbors of cell •. Right: packed checkerboard 
showing first half of whites, where the neighboring cells n, e, s, w 
are marked, also in the second half of black cells • is singled out.

Equilibrium energy per spin e and magnetization m (inset) versus 
temperature. Exact values at the transition marked as crosses.

Performance

Spin flips are accepted with probability

Spin flip time in nanoseconds vs. lattice size running on an Intel 
Core 2 Duo E8400@3.0 GHz CPU, and running on GTX 280, GTX 
470 and GTX 480 NVIDIA GPUs. 

General work-flow

Code features

➢ discretize x=0...(L-1)
➢ keep u(x,t) as a real variable
➢ periodic boundary conditions
  (u[0] coupled with u[L-1])

➢ Spline from a presorted array LxM
➢ Dynamically generated disorder

● Line of size L

● Two different disorder schemes

Implementation

Benchmarking

Kinetics

Parallel Kinetic Monte Carlo

● Pure CUDA C

● Trial hop (i → j): tower sampling with 
vectorized binary search.

● Metropolis: Parallel rejection

● Update Local Energies: 
embarrassingly parallel kernel.

● Global observables: parallel 
reductions.

Code features

● Speedup per accepted hop monotonically increases with decreasing 
temperature (acceptance), roughly independent on L.

● No signs of saturation for the speedup up to values as low as T=0.001.

● For large N=L2 the computation scales as O(N) both in CPU 
and GPU, but with an important ratio, controlled by the optimal 
number of concurrent threads, yielding speedups over 100x.

● This speedup dominates the total computation time at large N.

General considerations:

Performance

Performance

“Pseudo-spectral” method: transform Fourier, 
compute and anti-transform at each step

Markov-chain MC with proposal matrix Q 
and acceptance P between conf.  and .

1.Propose with independent threads 
(k=1,...,M), moves  → k.

2.  Accept the move  → k independently 
with prob Pk (without updating)

3. If at least one thread has accepted a 
move, update the conf. to  q, where q 
is the lowest label among the threads 
accepting.

random potential

Overall speedup

Metropolis

Energy update

(CPU3/GPU3)

Parallelization strategy

Code features

Pseudo-equilibrium single-particle density of states

● Largely dominated by the update routine (involving 2 RNG calls per 
site)

● GTX 280 provides 42x to 47x speedup
● GTX 470 provides 76x to 108x speedup
● GTX 480 provides 95x to 155x speedup

● There are two competing factors in the loop of the update kernel:
● One decreasing with L. We have one RNG for each thread, the 

global memory for the RNG state is retrieved one time at the 
beginning and stored at the end. The larger the L, the single 
load/store latency is distributed into more cells.

● The second factor is increasing in L and is given by the 
inherent overhead incurred by a loop (comparison and 
branching), that for L = 32 768 amounts to 4096 repetitions.

Average rejection time per executed hop in ms

Average update time of energies per executed hop in ms

interface velocity elastic interactions pinning potential external force

Code featuresEuler integration in discretized time

● C++ and CUDA C

● Massively parallel dynamics integration 
(alternating even and odd sites), L/2 threads.

● Averages of displacement velocity and quadratic 
width made by Thrust transforms and reductions.

● Coexisting CUDA kernels and Thrust functions, 
wrapping pointers.

● Uses alternatively two different RNGs:
→ MWC, as in Potts model.
→ Philox, a counter based RNG of the 
Random123 library.

● Uses cuFFT to compute structure factor S(q,t)

Update step mean-computing time in ms. Platform: AMD Phenom II 
X4 955 Processor @3.2GHz, NVIDIA GTX 470

Platform: AMD Phenom II X4 955 Processor @3.2GHz, 
NVIDIA Tesla C2075, NVIDIA GTX 470.

Acronyms: CS: Cubic Spline, LS: Linear Spline, DP: Double 
Precision, SP: Single Precision, psu: practical speed-up.

Mean update time execution and their related CPU vs. CPU+GPU practical speed-ups.
System size L=65536 taken as an example.

Platform: Intel Core 2 Quad CPU Q9550 
@2.83GHz, NVIDIA GTX 480.

speed-ups
~138x-477x

Elastic propagator
Long-range!!

Plastic strain rate

randomly taken from P(y)

Parallelization strategy

Embarrassingly parallel in Fourier space, local in (qx,qy)

● C++ and CUDA C

● Intensive use of cuFFT

● Uses Thrust for averages and extrema finding

● Uses Philox RNG

Speedup
up to ~ 50x

Platforms:
- Intel Xeon E5-2609 @2.4GHz 10M,  Quadro 600 & Tesla c2075
- Intel Sandy Bridge EP E5-2670 @2.6GHz 20M, NVIDIA K20

Just a fast benchmark so far...

measure?

Initialization

Compute

Fourier transf.

Compute

Fourier invert

Compute quantities

Euler integration

(Memcpy, Memset, Kernels)

(Kernel / Thrust call)

(cuFFT call)

(Kernel / Thrust call)

(cuFFT call)

(Kernel / Thrust call)

(Thrust calls, Memcpy)

exit?

N

N

Y

Y

Critical flow-curve, stability and avalanche distributions

We have adopted the the GPGPU approach to address different problems in Condensed Matter physics. The goal in each case was to implement and verify a code to produce valid physical results. Very 
good practical speedups have been attained respect to what people have been using before for the same kind of problems, even when optimization is not seriously considered.
Present challenges include: i) exploit better the hardware, starting with CPU-GPU concurrency and multi-GPU approaches; ii) deal better with I/O operations, sometimes they drain all the obtained 
performance, dilemma “output raw vs compute on-the-fly”; iii) migrate from ad-hoc CUDA kernels to library calls for better portability; iv) make the jump to Open CL.

Stress change shear-rate

http://dx.doi.org/10.1016/j.cpc.2012.02.026
http://link.aps.org/doi/10.1103/PhysRevE.86.031121
https://bitbucket.org/ezeferrero/potts
https://bitbucket.org/ezeferrero/potts-glass
http://dx.doi.org/10.1063/1.4893513
https://bitbucket.org/ezeferrero/coulomb_glass
http://dx.doi.org/10.1016/j.crhy.2013.08.002
http://dx.doi.org/10.1088/1742-5468/2013/12/P12004
https://bitbucket.org/ezeferrero/qew
http://dx.doi.org/10.1103/PhysRevLett.113.248301
file:///home/ferrero/Dropbox/Congresos-Charlas/2015-07-PUMPS2015/http:%2F%2F
https://bitbucket.org/ezeferrero/ep

