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Technical description of the stress-controlled and quasistatic strain-controlled protocols used to
determine the flowcurves and the avalanche statistics.

A. Simulation protocols

We do straightforward simulations of two-dimensional
systems described by Eq.(1) integrated with a first
order Euler method. In each integration step, the
term

∑
j Gijej is treated in Fourier space, computed as∑

qGqeq. In this respect, note that in a square numeri-

cal mesh of size L×L, quantities such as q2x and q2y must
be understood as

q2x,y ≡ 2 − 2 cos
(πnx,y

L

)
(SM1)

with nx,y = 0, ..., L− 1.
Concerning the form of the local forces fi = −dVi/ei,

we generate them ‘on the flight’ in the following way.
We start with the value of ei such that eL < ei < eR,
where a parabolic potential is defined in terms of eL, eR
and having an unitary curvature. In concrete, the force
on ei coming from the disordered potential is taken as
fi = −(ei−(eL+eR)/2). As soon as the dynamics makes
ei larger than eR, we set a new parabolic potential well
for ei by choosing

enewL = eR (SM2)

enewR = eR + ∆ (SM3)

where the ∆ is randomly chosen from a flat distribution
between 0.5 and 1.5. This is what we call the ‘cuspy’
potential, since it is composed by a concatenation of
parabolic pieces and the transition from one to another
produces a discontinuity in the force. In the case of
‘smooth potentials’ instead, the potential wells are de-
fined and updated in the same form, but the force on
each potential well is given by

fi = − sin(ei − (eL + eR)/2). (SM4)

Note that in this form, the value of fi and also its deriva-
tive dfi/ei are continuous functions of ei.

In constant stress simulations, the value of σ in Eq.(1)
is kept fixed, and the main output of the simulation is
the value of γ̇ [from Eq. (4)]. Such a protocol is used
primarily to obtain the flow curves. A second important
outcome of these simulations is the distribution of local
distances to instability, namely the distribution of the
quantities xi ≡ eRi − ei. The average minimum value of
xi is used to calculate the θ exponent.

On the other hand, we want to be able to access in-
dividual avalanches very close to the critical stress, and
collect statistics of size, duration, etc. This is better ac-
complished by using a quasi-static protocol. To do so, we
move away from the fix-stress modelling and modify Gq

by defining Gq=0 = −κ, with κ a constant parameter of
order one. The equation for the evolution of the average
strain is transformed to

γ̇ ≡ dei
dt

= fi(ei) − eiκ+ σ (SM5)

that can be interpreted as a progressive reduction of σ
(due to the term eiκ) as the average position of the
interface moves forward. This stress reduction guaran-
tees that any activity in the system will eventually stop,
reaching a metastable static configuration. At this point
the stress has to be increased again to trigger a new
avalanche, and the process can be repeated. The evo-
lution of stress along the simulation is sketched in Fig.
SM1. From such a simulation we collect the statistics of
avalanche size (S) and stress increments needed to trigger
new avalanches xmin.

It should be mentioned, nevertheless, that quasistatic
simulations in the form just described are rather ineffi-
cient: The dynamic evolution is continuous and we need
to wait until the activity falls below a very low threshold
to safely decide that the avalanche has stopped. In the
same way, to trigger a new avalanche, the stress has to
be increased very slowly to be sure to detect the precise
beginning of the new avalanche. In the case of piece-wise
parabolic potentials, an accelerated numerical scheme
can be implemented as follows. Since we use a poten-

stress

S/N x
min

time

Figure SM1. Sketch of the stress in the system as a function
of time in quasistatic simulations. From this kind of plot,
statistics of avalanche size (S) and stress increase to destabi-
lize a new avalanche (xmin) can be collected (N ≡ Ld is the
system size).
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tial where all parabolic wells have the same curvature,
the form of fi(ei) is simply given by

fi(ei) = −(ei − e0i) (SM6)

with e0i = (eLi + eRi)/2. Then Eq.(1) can be solved in a
single step to obtain the new equilibrium position of the
interface. The solution in Fourier space is given by

eq =
e0q

1 −Gq
. (SM7)

If all the ei obtained by Fourier-inverting (SM7) lay
within their potential well, i.e., eLi < ei < eRi, then the
configuration found is a static solution to the problem.
However, if some resulting ei happen to be outside the

range [eLi, eRi], it means that the corresponding e0i have
to be adjusted and Eq.(SM7) solved again to find a new
set of ei. This process is repeated until all ei are within
[eLi, eRi]. At this point the avalanche has stopped. In
this scheme one actually loose the true continuous time
evolution of the real dynamics, but it results to be com-
putationally much more efficient and–as verified in test
cases–it does not show any noticeable differences in the
avalanche statistics with respect to the case in which the
true dynamics is used.

In all simulations, before collecting statistics of the
quantities of interest, we do a sufficiently long equilibra-
tion run, and only once the evolution looks stationary
(e.g., when we get a stationary value of stress) we start
collecting the relevant variables that are reported. The
length of the equilibration stage actually depends on the
value of ε.
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