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Yield stress fluids display complex dynamics, in particular when driven into the transient regime between
the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we
implement mesoscale elasto-plastic descriptions to analyze such transient dynamics in athermal systems.
Both our mean-field and space-dependent approaches consistently reproduce the typical experimental
strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic
processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization)
phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a
static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and
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Yield-stress fluids (YSFs), such as dense emulsions, colloidal
suspensions and pastes, display a rich rheological behavior that
has attracted considerable attention in the last decades (see
reviews by Bonn et al' and Nicolas et al?). Typically, the
rheological behavior of YSFs is characterized by the flow curve
measured in a stationary flowing state. The dependency of the
stationary shear stress 2 on the applied shear rate j is in many
cases well described by a generalised form X(7) ~ oy + Aj",
where the prefactor A, the “Herschel-Bulkley” exponent n and
the yield stress oy (better referred as the dynamical yield stress)
are the relevant fitting parameters. But it is well known that
assessing the material’s bulk properties at finite shear flow and
in the steady state limit, does not fully account for the complex
dynamics of certain YSFs. For example, the interplay between
external driving and internal aging has been shown to cause
complex thixotropic behaviors,? leading to non-homogeneous
flow even under homogeneous driving conditions. The impor-
tant challenge is then to study not only the well established
flow properties in the homogeneous steady flow regime, but
also the spatially resolved transient dynamics that bridges the
solid response at small deformations to the flowing state at
large deformations.

In recent literature, efforts have involved typically two kinds
of protocols: shear start-up and creep tests.*”” The first approach
controls the applied strain whereas the latter records the strain
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rate response to a sudden stress step. In particular, creep
experiments measure the strain rate evolution in response to a
fixed stress ¢ applied at a given waiting time ¢, after sample
preparation.>®™% In this way, the response of the system is
probed as a function of its initial age. Such experiments reveal an
intriguing behavior with two salient features: (i) the strain-rate
7(t) in response to a stress larger than the yield stress is strongly
non-linear and nonmonotonous, with a so called “S-shaped”
dependence of (£),>” including a nontrivial “primary creep
regime” often described by a power law 7 ~ ¢*; (ii) the
fluidization time scale ¢ diverges when approaching the yield
stress, yet in a non-universal manner. Both features are found to
depend on sample preparation. The experiments ultimately lead
for small applied stresses to a dynamical arrest or steady creep
and for sufficiently large applied stresses to steady flow or
failure, depending on the material.

In this work, we reproduce and interpret the above experi-
mental features using mesoscopic modeling approaches. The
implementations we use are suitable for athermal amorphous
systems, which constitute a large sub-class of YSFs, including
foams, emulsions, physical gels and granular media;" where large
Peclet numbers assure that thermal fluctuations are negligible
compared with mechanical fluctuations induced by the response
to an external driving. Note that the material mechanical proper-
ties and dynamics will always depend on its preparation protocol
and subsequent waiting period prior to deformation; during
which slow temperature-dependent processes such as glassy
relaxation are indeed relevant. In any case, our approach comple-
ments previous studies addressing creep in systems for which
thermal fluctuations are also important during the dynamics,
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based on the soft glassy rheology model"*™"” or mode-coupling
theory."®'® We work in particular with mean-field*® and spatially-
resolved versions of elasto-plastic models; where the flow of YSFs
results from the interaction among local plastic events triggered
by external driving. It has been shown that such models account
for various properties of YSFs.”'” While previous formulations
consider a fixed strain rate as a control parameter,”>**>" we
extend those models here to describe the constant imposed stress
condition relevant for creep. With that, we reproduce the experi-
mental features (i) and (ii) explained above. Interestingly, we find
the same fluidization time dependence on initial aging as
Siebenbiirger et al.’> Furthermore, we show that the divergence
of the fluidization time is described by a power-law relation
when the distance to yield is measured with respect to an age-
dependent static yield stress oy larger than the dynamical yield
stress gy itself. As in experiments, the resulting power-law
exponent appears to be non-universal.

Methods

Mesoscopic elastoplastic model

Our spatially-resolved approach is extended from a previous
version used to describe steady state flows.?**$2%32 [t consists
in a square lattice where a node (i) represents a typical cluster
of particles undergoing plastic events®' and i, j the discretized
coordinates along the x and y directions respectively. Once a
reference state is set, each node is associated with a local plastic
deformation w,vgl which is, in general, heterogeneous. In addi-
tion, a node can develop an elastic strain yf’,l associated with a
local stress g = ,uyy The local stress is composed of two parts,
o5 = ™" + oi'", where ¢™*" is the externally applied uniform
stress, and ¢} encodes the stress fluctuations resulting from
the interactions between plastic heterogeneities, more precisely

lNT*”ZG’/UVU (1)

The interaction kernel G is of the Eshelby’s type®* as described
in ref. 29, plus an homogeneous part 1/N with N the system size,
so that the integral over space of the internal stress caused by
any plastic strain field is null. Thus oj'" describes the local
stress fluctuations in a macroscopically stress free state. Applying
a macroscopic stress amounts to shifting uniformly the local
stress without altering internal fluctuations.

Besides, each node alternates between a local plastic state
and a local elastic state by switching a local state variable
n; between 1 and 0, respectively. Explicitly when |oy]| is larger

than o, the site becomes plastic (n; = 0 — n; = 1) at a rate
1/t and becomes elastic again (7; = 1 — n; = 0) at a rate
1/Tre5722 29 ;o
|o] > 0'c~'fp|7l
ny(f): 0 . @)
V0, Tres
The local dynamics is expressed as
INT | _EXT
o _ ny L = ”i/$~ (3)
de'Y ur ‘ ut
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We set in our simulation 7 = Treg = 71 =1, 6. =1 and u = 1.
The model described above is a reformulation of the model in
ref. 29 but allowing us to model a stress controlled protocol. To
summarize, eqn (1) and (3) form a closed stochastic dynamical
system governing the evolution of the plastic strain field ygl(t).
Given the 1n1tlal condition defined by ygl( 0) and the imposed

EX

stress ¢, we simulate the system and measure the macro-

scopic plastic strain (7)P'(¢)= y” /N from which the strain

i
rate response (7)P'(£) results directly.

Mean-field approach for creep dynamics

The probability distribution function P(q,t)ds gives the fraction
of nodes with a local stress in [g,6 + do] at time ¢. Our mean-
field approach to approximate the time evolution of this
probability distribution for a typical site is inspired by the
Hébraud-Lequeux model®® and thus belongs to the class of
athermal local yield stress models.*™** One should note that for
the derivation of this model, we assume several strong simpli-
fications with respect to the spatial elasto-plastic description.
Therefore, all comparisons can only be done on a qualitative
level. As we will discuss later the detailed aspects of the creep
curve depend on these simplifications whereas other more
general features, like power-law scalings, appear to be very
general. Our mean-field approach describes the dynamics of
the distribution P(q,t), and differs from the original model*°
by further taking into account a strain rate that may vary in
time 7(¢):
0,P(0,1) = — 20(o] — 0)P(o, 1) + T(1)3(0)
! (4)
— Goj(t)0,P(a,t) + D(1)d,>P(a,1).

The first term on the right hand side describes local yielding
with rate 1/7 if the local stress exceeds a yield stress o.. (0 denotes
the usual Heaviside distribution) and the second term is the
corresponding gain term accounting for a instantaneous com-
plete relaxation of the stress. Here (o) is the Dirac distribution,
and I'(¢) is the rate of plasticity

r( = 1[\ . doP(a,1). )

The third term accounts for the local elastic response with
shear modulus G,. The last term in eqn (4) is a mean-field
approximation for interactions between different macroscopic
regions presented in the spatially resolved model. This term
describes in an effective way the stress fluctuations caused by the
elastic response to surrounding yielding events as a diffusive
stochastic process with a time-dependent diffusion constant D(¢)
proportional to the rate of plasticity I'(¢):

D(t) = ol (2). (6)

This approximation by a diffusive process assumes that the
“kicks” received by a typical site are uncorrelated and of finite
variance, an approximation to the true dynamics of elasto-
plastic models that has been improved, in the quasistatic limit
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of vanishing strain rate, by the work of Lin and Wyart®” taking
into account the fact that these kicks have a broad distribution.
We are not aware of any similar extension to finite strain rates,
and in this work will remain at the simpler level of description.

Driving the system with a constant stress, [dooP(c,1) =
constant, leads by integration of eqn (4) to a self consistent
determination of the strain rate as

. 1 J

) =— dooP(o,1). 7
=Gl (0,1) )
Note that this strain rate corresponds physically to the rate of
total plastic strain released by the yielding sites, each site releasing
d/Gy, eqn (4) and (7) can be solved numerically starting from a
given initial condition P, = P(o,t = 0).

Initial condition and aging

In the mean-field approach, the initial condition is fully defined
by Py(a) = P(a,t = 0). To represent the quenched state of a system
before applying the step stress, we consider a distribution of
zero mean Pj(s) that describes the internal stress fluctuations
of a system in a macroscopically stress free state. This distribu-
tion will be instantaneously shifted to the desired value of the
imposed stress ¢™" at the beginning of the creep protocol to
mimic the application of a stress step, i.e. P, = Py(c — ¢"~"). In
the spatially resolved elasto-plastic model, the initial state is
defined by y5'(¢ = 0). Using eqn (1), y}'(¢ = 0) can be converted to
a field of internal stress fluctuations o3 (¢ = 0) from which a
zero mean distribution, such as PE(GINT), can be constructed.
Then the distribution of local stresses at the onset of creep
experiments can also be described as an instantaneous shift of
the zero mean distribution with the imposed step stress ™,
such as Py(c — ¢™7). In practice, we first choose a specific form
of Py(), then convert it back to a random realization of y,‘}l(t =0)
and the creep test is simulated by evolving the model under a
fixed value of ¢**. Once an initial condition is prepared, we
numerically integrate the dynamic equations using an explicit
Euler method.

In principle we should consider only distributions Py(s) with
a compact support in both models, i.e. Py(c > a.) = 0, so that
the system does not evolve until the external load is applied.
Hence, our models do not explicitly resolve the aging dynamics,
but we mimic the role of aging by using different choices of
the initial condition. In a first approach, we assume for the
distribution Py(¢™") a Gaussian shapet centered at zero.*® The
only parameter is the standard deviation s4, characterizing
the level of residual heterogeneity in the amorphous system.
As more relaxed systems display a less prominent “Boson peak”,
indicative of a better homogeneity of the elastic properties,®” we
assume that relaxation is also reducing the width of the stress
distribution. Thus a Py(¢™") with a smaller s4 corresponds to a
more relaxed system, and we take 1/s4 as an indirect measure of
the age. Interestingly, the standard deviation of our distribution

T Strictly speaking this initial condition may violate the compact support, but in
practice the standard deviations studied are small enough such that the statistical
weight beyond ¢, can be regarded as negligible.
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can be formally linked to the aging parameter in the lambda-model
for thixotropic materials,*** as discussed in the SI of ref. 20.

Results
Flow curves

Let us start, prior to the study of the creep behavior, by com-
paring the flow curves obtained from the stress control protocol
here presented to those obtained from the strain rate control
protocol explained elsewhere.”**° In the stress control protocol,
we set the stress by choosing an arbitrary initial condition
among those with the desired stress value. The system evolves
with a stress-preserved dynamics and reaches a steady flow
regime at large times when the memory of the initial condition
is completely erased. We then average j(¢) over a large time
window in the steady state. For both the spatial model and the
mean-field approach, the comparison shown in Fig. 1 reveals a
good consistency between the two types of protocols. The dynamic
yield stress gy of the spatially-resolved model is estimated to be
~0.7536. The dynamic yield stress gy of the mean-field model
is a decreasing function of the mechanical coupling strength o,
as explained in ref. 31.

Creep curves

In the following, we use exclusively the stress-controlled protocol.
An initial condition with an imposed stress is chosen, corres-
ponding to the application of a step stress on a relaxed sample
in experiments.

Typical responses of j(¢) and 7(¢) for the two models just after
the application of a step stress are shown in Fig. 2 and 3. All these
curves are obtained with an imposed stress larger than the
dynamical yield stress, i.e. Ac = ¢™ — gy > 0. The fact that
the two models differ in their behaviors of j(¢) for ¢ < 1 is due to
the different ways in which they describe the plasticity, namely a
viscous relaxation in the spatially resolved model compared to an
instantaneous one in the mean field approach. Beyond a micro-
scopic time scale ¢, ~ 1, up to which they depend on the details
of the different dynamics, we notice that the strain responses of
the two models behave qualitatively in the same way. Already at
early times after ¢,;. ~ 1, the strain rate 7 monotonically decreases
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Fig. 1 Check of the consistency between different protocols. Dashed line:
flow curves obtained by strain rate control protocol. Squares: flow curves
obtained by stress control protocol. (a) Spatially-resolved elasto-plastic
model. (b) Mean-field model.
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Fig. 2 Creep behavior at different imposed stresses for the same initial
relaxation (aging). Left and right columns show respectively data produced
by the elasto-plastic and mean-field models. The upper row shows the
strain time series and the bottom row shows the corresponding strain rate
time series. Elasto-plastic model: s4 ~ 0.083, values of Ag from purple to
red (bottom to top) 0.005, 0.01, 0.015,...,0.1. Mean-field model: « = 0.4,
sq = 0.32, values of As from purple to red (bottom to top) 0.1, 0.12,
0.14,...,0.28.
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Fig. 3 Creep behavior for different initial relaxation at the same imposed
stress. Left and right columns show data produced, respectively, by the
elasto-plastic and mean-field models. The upper row shows the strain
time series and the bottom row shows the corresponding strain rate.
Elasto-plastic model: Ag = 0.03, sq4 values from purple to red (bottom to
top) 0.083, 0.089, 0.096, 0.104. Mean-field model: Ac = 0.18, s4 from
purple to red (bottom to top): 0.28, 0.3, 0.32, 0.34.

for the smallest Ac > 0 cases and correspondingly the strain 7y
reaches a plateau. This implies that even when the applied stress
step is above the dynamic yield stress, a quenched system sub-
mitted to a creep test may not yield to a flowing state. This is one of
the main differences with fixed shear rate protocols, where the
system is always forced to yield. We will come back to this point
later. For a larger imposed stress, instead, both the spatial and
mean-field models reproduce the characteristic S-shaped curve for
7(¢) observed in experiments.>”’
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For a fixed initial aging level (sq fixed in Fig. 2), before
entering the plateau of the steady-state regime, j(¢) displays a
creep regime where the strain rate decreases with time in an
apparent power-law fashion until it reaches a minimum.
Within this creep regime, the accumulated strain y(¢) shows a
sub-linear increase in time. After the minimum in 7, the system
enters a fluidization regime where the strain rate speeds up
toward the steady-state, and correspondingly the accumulated
strain y(¢) increases super-linearly to reach the linear regime of
a steady flowing state. As we further increase the stress, the
extent of the creep regime decreases, until it eventually dis-
appears and the system enters directly the fluidization regime
after tmic.

A similar effect is found for a given applied stress when we
vary the initial aging level (Fig. 3). The duration of the creep
regime decreases when increasing s4 (decreasing age), up to the
point where it disappears for large enough s4, and all curves
reach the same steady strain rate. This indicates that, at a given
applied stress, a less relaxed system is more likely to be fluidized.
These dependences on the applied stress and the initial relaxation
are reminiscent of the creep tests performed in bentonite
suspensions’ and colloidal hard sphere systems.’

Several works suggest a power law slowing down § ~ ¢ *
in the creep regime.®'"'**%*! Qur data can be indeed fitted
with such a power law for a modest range of the parameters
(s4,6°"). By doing so in curves where we can fit at least one
decade of power-law, we observe that the exponent u decreases
with increasing applied stress and decreasing initial aging
(increasing sq). The values of u extracted from the two models
are similar and vary from 0.6 to 1.2 (fits not shown here)
depending on sq and ¢™*7, a range comparable to those reported
in experiments.®'""?

Note that, in order to produce a comparable time depen-
dence of the strain rate, significantly different values of the
control parameters Ao and sq are used as input in the two
different models, as shown in Fig. 2 and 3. In principle some of
the differences in the creep response could result from finite
size effects in the spatial model and discretization effects in the
mean-field description. But here, we took care that for the
parameter range studied, these effects are not relevant. Instead,
to understand this discrepancy, one has to recall that the rules
for the local plastic deformation in the two models are very
different. In the mean-field model the local stress release is
instantaneous and complete whereas the spatial model imple-
ments a duration of events and only a partial local stress relaxa-
tion. This is also the origin of different behaviors of the two
models in their j(¢) for ¢ < tnie ~ 1. Before the vertical dashed
line (Fig. 2 and 3), the strain rate j(¢) from the elasto-plastic
model increases linearly (thus y(¢) increases quadratically) until
t X tmic, while the strain rate from the mean-field model begin
with a finite value and varying significantly only after ¢,;c ~ 1.
Another obvious difference is the interaction kernel of the
spatial model, leading to a spatially correlated dynamics. As
shown before, the flow curves do not match and in the mean-
field model, they depend on the value of , and consequently so
do the creep curves. For these reasons we can only hope to
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qualitatively reproduce the creep curves with the mean-field
model. Interestingly, however there are other quantities like the
fluidization time dependence on the imposed stress that are
still quantitatively comparable and thus point towards more
general behavior. We will discuss this point in detail in the
following section.

Fluidization time

We now discuss the relation between the fluidization time scale
and the distance of the applied stress to the dynamical yield
stress Ag = ¢™*T — gy. Two characteristic times can be recognized
in the evolution of 7, at least for intermediate values of the
applied stress. We call t,,, the time where the minimum of }(¢)
occurs, after the creep regime, and define t¢ as the inflection
point of j(¢) in the fluidization regime before entering the steady
state. Following ref. 6, we choose ¢ to characterize a fluidization
time scale. Note that 7¢ is always defined, even in the absence of a
creep regime (e.g., for large values of As) where we can still
recognize a fluidization phase with an acceleration of j, and it
will characterize the typical time needed to reach the steady flow.

Fig. 4 shows the 1; dependence on Ac for different initial
aging levels. Experimental results on a carbopol microgel®
suggest a power law dependence 7 ~ Ag * with  measured
from 2 to 8 depending on sample preparation. This behavior
must be distinguished from studies on thermal systems"”*>"**
which suggest an exponential relation instead. Our results show,
especially when sq4 is small (well relaxed systems), a convexity of
the curves indicating that the fluidization time increases faster
than a power law as Ao approaches zero. As sq becomes larger,
1¢(Ac) becomes more power-law-like. Fig. 4 also shows that more
relaxed systems display a stronger increase in ¢ for decreasing
Aoc. This aging dependence of t¢(Ac) qualitatively agrees with the
experimental results of Divoux et al.®

Despite the different functional forms when changing sq, to
quantify the dependence of 7¢(Ac) on aging, we define for each
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Fig. 4 Fluidization time ¢ vs. Ao for different initial relaxation levels. Main
figure: elasto-plastic model, sq4 increases from the top to the bottom
(sq = 0.078, 0.081, 0.083, 0.089, 0.096). Inset: Mean-field model with « = 0.3,
Sq increases from the top to the bottom (sq4 = 0.22, 0.24, 0.26,...,0.34).
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curve a value of . When appropriate (large s4, as discussed
above) we directly fit a power law 7, = AA¢—?, finding in both the
spatial and mean-field models consistent values (f ~ 2.2 and
2.38, respectively), lying in the range of experimental results.
For initially well relaxed systems (small s4), we define an effective

dIn
‘B = deW

fluidization process slows down with decreasing stress. Results
are shown in Fig. 5(a). We see a systematic decrease of § with
sq for both models. Moreover, the estimated values of f§ cover
the same range (from 2 to 8) found in carbopol microgels.®*>
We also notice that, for the mean field model the exponent
p depends on the mechanical coupling strength «. A larger
mechanical coupling strength yields a larger value of f for the
same sq. It has been proposed in earlier works*® that the value
of o should depend on the specific form of the interaction

T . . .
f, that equally carries information on how fast the
g

kernel, and within simulations of particle based models it has
been found that « typically lies in the range*” of 0.26 to 0.33,
which is consistent with the range of o of the mean-field model
studied here.

Rationalization of the creep dynamics

In this section, we attempt to rationalize the behavior of the
global observables reported above by analyzing in detail the
evolution of the stress probability distribution. Although the two
models seem quite different in their formulation, the underlying
physical process are quite similar. For example, local plasticity in
the mean-field model consists of a total release of local stress
and a sudden return to the elastic state, which can be viewed
as the local plasticity in the elasto-plastic model in the limit
Tres — 0 and 7 — 0. In the elasto-plastic model, the stress
released by plastic events is re-distributed according to the
interaction kernel through eqn (1) keeping the average stress
constant but broadening the distribution P(c,t) with an ampli-
tude roughly proportional to the rate of plastic events. This
effect of stress redistribution is reasonably approximated in
the mean-field model by the diffusive term in eqn (4) with the
diffusion coefficient proportional to the plastic activation rate.
Although the more realistic elasto-plastic model contains more
information, the simpler mean-field model already captures the
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key ingredients needed to understand the underlying mecha-
nism of creep in athermal amorphous systems.

We therefore focus on the mean-field model and, to gain
insights into the complex dynamics during creep tests, proceed
to analyse the complex nonlinear behaviour of eqn (4) in a
qualitative manner. The time evolution of P(s,?) is driven by the
existence of a population of sites in an unstable state, (P(c > d.)).
Actually, by integrating eqn (4) beyond o, one obtains

ol (1) = —=I(1) + T (1) oc| P(ac)| + 095 P(oc)] (8)

using that the negative part beyond —o. is negligible for
positively imposed stress and j(¢) =~ %F (1), (since P(o) weights
0

little and decreases fast beyond o). When the population of
unstable sites 7/ is non-zero, it decreases exponentially due to
the loss term of plastic activation represented by the first term
on the r.h.s. of eqn (8). At the same time, it is supplied by two
comparable fluxes represented by the last term in eqn (8):
the stress drift due to the elasticity and the stress diffusion
due to stress redistribution. These fluxes are both proportional
to the unstable population. In particular, the drift and diffu-
sion induced fluxes are respectively proportional to P|,-, and
60P|U:UC~

Let us first consider two extreme cases with ™' > oy,
where a steady flowing state exists according to the flow curve.
If the standard deviation of the initial Gaussian Py(o) is large
enough, the supply of the unstable sites is as important as the
plastic activation. Thus, the supply and the loss rapidly reach a
situation where they compensate each other. This corresponds
to the curves with no creep regime at high imposed stresses in
Fig. 2 and 3. On the other hand, if the standard deviation of the
initial distribution Py(c) is very small, not only a small portion
of the population is unstable but also the values of P|,-, and
05P|s=0, are close to zero. The term of supply is then negligible
compared to the loss term in eqn (8). As a consequence, drift
and diffusion are as weak as the unstable population at the
beginning and become even weaker as the unstable population
decreases exponentially. The strain rate rapidly decreases, the
system gets eventually stuck in a configuration where all sites
are below . and the flow stops. This situation corresponds to
the curves with vanishing strain rate in Fig. 2. Note that this
situation can be observed in experiments and simulations with
fixed stress protocols' even if the applied external stress is
larger than the dynamic yield stress oy(«).

The above analysis raises the question of the evolution of
P(a,t) that causes the transition from the creep regime to the
fluidization regime and eventually the steady flow, observed for
intermediate values of sq. It further suggests that 7¢ can diverge
before Ag tends to zero (see Fig. 4). For a well relaxed system
(small sq), we can therefore introduce a static yield stress
oy defined as the minimum stress needed to fluidize a system
at rest. oy will depend on the initial state and will be larger than
the dynamical yield stress oy. In an extreme situation where
sa = 0, one should apply ™" > 6% = .. to make the system flow.
This is consistent with previous studies on transient dynamics that
report an age dependent overshoot in the stress-strain curve.'>*5>°
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Actually, the stress overshoot in the zero strain rate limit is
closely related with o3. A comparison between the two is dis-
cussed later on.

To gain a better understanding of the initial evolution of the
strain rate, we study the full dynamics in the early regime -
such that mesoscopic blocks have been activated at most once -
by setting P = P + P,, with Py referring to the sites that have
never been activated and P, to those activated once. Thus
Py(o,t = 0) = Py(0), Pa(0,t = 0) = 0 and the distributions obey:

01 Pq(0,1) = — Gojg(1)05Py(0, 1) + Dq(1)05* Py(0, 1)

| o
- ;(9(|0’| —0c)Pq(0,1).

0Pa(0,t) = —Gojg(t)0aPa(0,8) + Dg(t)3,°Pa(0,t) + I'4(£)0(0).
(10)

where j4(t), I'q(¢) and Dq are defined as above, with P replaced
by P,. We note that eqn (9) and (10) approximate the full
dynamics, ignoring the possibility of multiple activation. As a
result they will always lead to a vanishing strain rate at long
times, 74(f) — 0. However, the comparison between this approxi-
mation and the full solution will give us insights into the time
range over which the initial condition influences the fluidization
process.

In Fig. 6, we compare the approximate solution j4(¢) obtained
by solving eqn (9) and (10) with the full solution j(¢), for the
same initial settings (sq,6"~"). We used three different values of
the applied stress to have different extents of the creep regime.
Fig. 6 confirms that in all situations, up to the mid-fluidization
regime, y4(t) and j(¢) are in good agreement, indicating that the
dynamics governing the creep regime is dominated by the sites
undergoing their very first activations. The curves also show
that multiple plastic activations must come into play for the
crossover from the fluidization regime to the steady flow to take
place. We can conclude that the existence of a creep regime and
the value of 7,,, is determined by the initial condition, while the
full fluidization process, characterized by t¢, corresponds to a

T T T 1T T T

T T TTrTT T T

Fig. 6 Comparison between jq(t) (red dashed curves) generated by egn (9)
and j(t) (blue solid curves) generated by egn (4) for three different applied
stresses by which we have different extents of creep regimes.
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Fig. 7 Main figure: 1¢ vs. Ags for the elasto-plastic model. Inset: ¢ vs. Aas
for the mean-field model, « = 0.3. The values of s4 are the same as in Fig. 4.

process of diluting the memory of the initial state through
multiple plastic activations.

Aging dependence of the fluidization time scaling

The previous analysis suggests that the critical yield stress
above which the fluidization takes place, is not determined
by the flow curve, but rather by the initial state and its level of
relaxation. Hence, the divergence of 7¢ as a power-law cannot be
expected if the dynamic yield stress gy is taken as a reference.
We then estimate a static yield stress from the divergence of the
fluidization time 1, by identifying for each s4 the value o%(sq)

for which a power-law t; ~ Ag; ™ = [JEXT - a5 (sd)fﬂs] holds.

Finding the best power-law fitting we estimate both f4(sq) and
6%(sq)- The result of this analysis is shown in Fig. 7. We observe
power-laws that span over a decade each, with effective expo-
nents depending on sq. The exponent values display a clearer
trend in the mean-field case, where f; seems to increase
systematically with sq4. We note however that, for the elasto-
plastic model, finite size effects may delay a bit the fluidization
7 when the imposed stress is small, so that the static yield
stress may be overestimated.i

In order to make more explicit the dependency of 65 and f
on sq, we plot oy — oy and fi; against s4/(o. — gy) in Fig. 8 and 9
(circles). This choice of axes responds to the fact that in the
mean-field model oy depends inversely on the mechanical
coupling strength o; so, the effect of the initial stress distri-
bution are only comparable for different values of « when they
are measured relative to the distance between the instability
threshold o, and the dynamical yield stress oy(). In a way, the
ratio sq/(o. — gy) compares the relaxation level (or stress spread)
prior to a creep test to the spread for a system flowing very
slowly, since o. — oy characterizes the spread of the stress

i The maximum system size for the simulations has been chosen such that we
enter the stationary state after a reasonable running time. Performing a finite size
analysis to more accurately estimate the value of static yield stress is difficult
within our numerical protocol.
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rate limit. Insets: fis vs. relative relaxation coefficient. Blue: o = 0.2, green:
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distribution in the zero strain rate limit. When sq and o, — oy
become comparable, we would expect 6§ — gy to approach zero.
In other words, if the initial aging is not enough (large values
of s4), the overshoot in the stress-strain curve (that distinguishes
oy and gy) should cease to be observed. This is consistent with
recent observations in particle based simulations® and con-
firmed by our data. Both models show 6§ — oy decreasing to zero
as sq/(0. — oy) approaches ((1). The insets of Fig. 8 and 9 present
the creep exponent fi; against the relative relaxation. We see, for
both models, an increase in f; with increasing level of relative
relaxation. Apart from some numerical fluctuations, the collapse
of s obtained for different values of o, shown in the inset of
Fig. 9, suggests a master relation between fs and sg/(c. — oy).
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The value of s found at large sq4 is comparable with experimental
measurements.® We also plot f§ against the relative relaxation
level sq4/(0. — oy) in Fig. 5(b). Curves for different values of «
collapse together, while the curve of the elasto-plastic model is a
bit shifted aside.

The static yield stress

Previously we have mentioned the relation between the static
yield stress 6% and the zero strain rate limit of the stress over-
shoot, we now address this point. We switch to the strain rate
controlled protocol and perform shear start-up simulations at
different values of strain rate from the same initial conditions
used for the creep tests. We record the largest stresses reached
in the stress—strain curves produced under different values of
strain rates and initial relaxation levels (sq). We find that for a
given sq4 the stress overshoot decreases with applied strain rate,
converging to a finite value when the strain rate goes to zero
(see the SI of ref. 20). The corresponding limit values for each
sq are plotted with crosses in Fig. 8 and 9. We observe that,
although the static yield stress and the stress overshoot do not
perfectly match, they stay representative each other along the
trend as function of sq. Comparing the spatial and the mean-
field models, these quantities have a better agreement for small
values of s4, which justifies the idea that the underlying physics
of the static yield stress observed in creep experiments and that
of the quasi-static shear stress overshoot are closely related.
We also notice that at large values of sq4/(c. — oy), a small but
systematic deviation exists. In such situations, the initial con-
ditions correspond to poorly relaxed systems, with a very short
fluidization time, for which deviations from the scenario out-
lined above may be expected.

Correlations and cooperativity in the creep dynamics

The effective dynamics described by eqn (9) and (10) and the
results shown in Fig. 6 explain, from a mean-field perspective, in
terms of populations above and below characteristic values, the
underlying physical process involved in creep and fluidization. In
the spatially resolved model we are able to further see the spatial
distribution of these populations. Therefore, we discuss now the
underlying physics of creep dynamics from the point of view
of the cooperativity of local plastic events in the elasto-plastic
model. Let us recall that on each site, the state variable 7(t)
alternates between zero and one respectively for elastic and
plastic states. In the creep simulation, one sub-volume or block
contributes to the macroscopic strain rate only when in its plastic
state so that the time evolution of the state variable field can be
used to infer the physical process underlying creep.

In order to implement this, we choose to accumulate the
state variable during a given time window

t+At/2
I’l,'/'(l/)dl/
t—At/2

Ji(t,Ar) = j (11)

The field f;; integrates the plastic activation information during
that time window. Here At is chosen to be of the same order of
magnitude as ¢ for the plastic activations at a given time scale ¢
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to be well represented by f(t). (Actually we have At ~ 2t/3.)
We then compute the following correlation map

) ()2
CA;:A,'(I) _ <fuft<}A21,>/+:A/<>f>2<f>

where (-) represents ensemble averages. To characterize a
“cooperativity level” of the plastic events taking place within
a corresponding time window, we define the correlation inten-
sity I. as the integral of the absolute value of the correlation map:

(12)

L(r) = J|CA,,A_,-(z)\dv. (13)
This quantity is indicative of how strongly plastic events are
correlated during a specific stage of the creep test.

The correlation intensity as function of time and the corres-
ponding j(¢) for different values of the imposed step stress are
presented in Fig. 10. After a linear increase of both I.(¢) and j(¢)
for t < tmic ~ 1 (not-shown), leading all curves to a common
I2 level, we observe distinctive features according to the value of
the stress. For the smallest applied stress, the correlation inten-
sity decreases with time and drops to zero, similar to the strain
rate. For stresses that lead to steady state flow in the long term,
the correlation intensity continues to increase beyond I2. Note
that while the behaviour of the strain rate at early stages is not a
clear indicator of fluidisation, an increasing I.(¢) appears to be
clearly correlated with it.

For those curves leading to a steady flowing state in Fig. 10(a),
the corresponding correlation intensities I(¢) (Fig. 10(b)) exhibit
two characteristic time scales: (1) a bump of I. before entering
the steady state flow, for example between points 3 and 6 on the
blue curve and between points 2 and 4 on the red curve. This
bump lies roughly in the same range as the inflection point in 7},
i.e. corresponds to the fluidization time t¢ This relates the
fluidization time scale 7¢ to a maximum cooperativity of plastic
events. The amplitude of the maximum in I. decreases with
increasing the applied stress beyond oy. When the applied
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Fig. 10 Elasto-plastic model: the strain rate j(t) (a) and the corresponding
correlation intensity /(t) (b) for different applied stresses. From bottom to
top Ag = 0.025, 0.035,...,0.85.
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stress is big enough, less cooperation is needed in the system in
order to overcome the static yield stress. The large amplitude in
I. observed between points 3 and 6 for the blue curve corre-
sponds to a stress that is very close to the static threshold o¥.
There, significant spatial correlations are needed in order to
fluidize the system. (2) At longer times, after entering the steady
state where no other time scales can be recognized from the j(¢)
curves, further information comes from the correlation inten-
sity. I.(t) displays a local maximum at long time (point 7 on the
red curve) after which it decreases again to a low value in the
steady state, point 9. Although the strain rate seems to reach a
steady state earlier, the true steady flowing state is achieved
only after the correlation level (cooperativity) is relaxed to a
steady value. In fact, the strain rate is still evolving up to that
moment, but on a very small scale. One recognizes also in
Fig. 10 that the steady state cooperativity level of plastic events
is inversely related to the steady state strain rate. Intuitively, a
fast strain rate tends to activate plastic events rather randomly,
while a slow strain rate leaves enough room (time) for correla-
tions in plastic activity to develop.®?

Activity maps and spatial correlation maps

The previous discussion of the development and correlations of
cooperativity can be explicitly visualized in our spatial model by
snapshots of accumulated plasticity and spatial correlations
within a time window, at different stages of the dynamics and
for different applied stresses. Fig. 11 shows these maps at the
instants marked by the number labels in Fig. 10.

Activity Map

(a) Small Stress: 4 (c) Large Stress: 3

Correlation Map

A

(b) Small Stress: 4 (d) Léfge Stress: 3

Fig. 11 Accumulated plasticity maps and correlation maps within a time
window for the first peak in the correlation intensity. Correlations are
plotted in log scale for a better visibility. (a and b) correspond to the point 4
of the blue solid curve in Fig. 10. (c and d) correspond to the point 3 of the
red solid curve in Fig. 10.

8314 | Soft Matter, 2018, 14, 8306-8316

Paper

At the beginning, not far from I.(¢) = I2, even when there is
significantly more plastic activity for the larger applied stresses
than for the smaller one, their correlation maps are almost struc-
tureless. A clearer spatial structure of correlation only appears at
the onset of fluidization, close to the peak of I.(¢) (Fig. 11(b and d)).
At this point, the accumulated activity looks homogeneous in
space for the large applied stress (Fig. 11(c)), while the cooperati-
vity of plastic events is confirmed by the quadrupolar form in the
correlation map displayed in Fig. 11(d). On the other hand, for the
small applied stress we already observe the plastic activity orga-
nized in several vertical and horizontal bands (Fig. 11(a)) and a very
pronounced vertical correlation pattern in Fig. 11(b), corres-
ponding to the fluidization phase (4 to 5 in Fig. 10). This suggests
that a strong correlation developing along the y-direction could be
responsible for the burst of plastic events leading to fluidization
(and the speed-up of 7). Of course, there is no a priori preferred
direction for cooperativity and the vertical correlation band
observed in this example should be equally frequent as an
horizontal one. Note that the elasto-plastic model may over-
emphasize the stripes formation for the cases of small applied
stresses due to the Fourier space implementation of the inter-
action kernel G and the fact that the model assumes homo-
geneous elasticity mediating the interactions among plastic
events. Nonetheless, transient shear banding during creep is
indeed observed in more realistic MD models.*

After the fluidization regime, the behavior of plastic activity
for the smaller applied stress is similar to that for the larger
applied stress (not shown). For the large applied stress, the
quadrupolar correlation gradually develops until one arrives at the
last maximum in I, and drops back to a very weak spatial pattern
in the steady state. Correspondingly, plastic activity is more
organized into thin slip lines at the last peak of the correlation
intensity than in the steady state. The phenomenology is a bit
more complex for the small applied stress, close to oy. The burst
of cooperative plastic events that organize into the shear bands in
the fluidization regime not only speeds up the strain rate but may
also induce sites outside the bands to become unstable: since
plastic activations inside a band tend to decrease the stress, this
should be balanced by an increase of local stresses outside the
bands in order for the overall averaged stress to keep constant.
As a result, more plastic events take place randomly outside the
shear bands; this acts against overall cooperativity: the correlation
intensity drops significantly after the large bump (3 to 6 in
Fig. 10). The remaining process afterwards is very much like the
one in the case of the large applied stress. Activity maps show thin
random slip lines for both stresses and the correlations are both
very weakly quadrupolar. The only difference is that the last
maximum in I(¢) appears later and the final stationary correlation
pattern is a bit more pronounced for the smaller stress.

Conclusions

We used both spatially-resolved and mean-field mesoscopic
models to study the creep behavior of athermal amorphous
materials with different initial relaxation degrees. Despite the
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simplicity of the models, they are sufficient to reproduce the
S-shaped strain rate response observed in experiments. Further,
the two models are consistent in both qualitative and quanti-
tative manners, so that the mean-field model can be considered
as a simplified way to understand the more realistic spatially
resolved model. We measured the power law slowing down
7 ~ t " in the creep regime. We found that the exponent u
produced by both models lies in the same numerical range as
experimental results but is not universal with respect to the
applied stress and the level of initial relaxation. We distinguished,
within the framework of the models, the different underlying
physical processes for the two time scales 7,,, and 7¢ that char-
acterize the creep behavior. ., is determined by the initial stress
distribution Py(c) around the marginal stability threshold o,
while ¢ is closely related to subsequent plastic activations and
spatial cooperativity of plastic events. We interpreted our results
on the relation between the fluidization time 7 and the applied
stress 6™ by defining a static yield stress ¢$, which increases
with initial relaxation. A convincing power law ¢ ~ (6™ — a§) 7
is observed, with fi; increasing when shortening the initial aging
and taking values comparable to those reported in experi-
mental studies. Finally, we defined an intensity of spatial
cooperativity that can serve as a precursor to distinguish
systems that fluidize from those stuck at the early stage of the
creep phase. The onset of the fluidization regime is associated,
especially for small stresses, with a strong spatial cooperativity.
Moreover, we noticed that spatial correlations in cooperativity
seem to be qualitatively different between systems that undergo
a creep regime prior to the fluidization and those that fluidize
directly.
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