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Magnetic domain wall creep and depinning: A scalar field model approach
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Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a
deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using
simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We
present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular
easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar
magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning
regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can
be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of
a Voronoi tessellation model for the disorder.
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I. INTRODUCTION

The study of field-induced magnetic domain wall motion in
thin ferromagnetic films has received a great deal of attention in
recent decades. Basic research allowed for the promise of new
technological developments relying on the motion of domain
walls [1–3] and received a large impulse as a reward. In par-
ticular, magnetic thin films with perpendicular anisotropy are
good candidates for high-density magnetic memory devices.
One of the advantages of these systems is the narrow domain
wall width, of a few tens of nanometers, and the relatively easy
control of the domain wall position with external magnetic
fields or electric currents [4,5]. Therefore, the prospective
development of new technologies based on domain wall motion
prompts the search to deepen the understanding of domain wall
dynamics.

How a domain wall in a magnetic material moves is
dictated by the interplay between the external drive, thermal
fluctuations, ferromagnetic exchange which results in domain
wall elasticity, and disorder present in the sample. The external
force acting over a domain wall can be generically considered
to be the result of the application of an external magnetic field
favoring the growth of one of the domains separated by the
wall. When the magnetic field is small, domain wall motion is
strongly hindered by the disorder. The velocity of the domain
wall is ruled by activation

V = Vde
−�E/kBT , (1)

where �E is a disorder-dependent energy barrier, kBT is the
temperature energy scale (with kB the Boltzmann constant),
and Vd is a reference velocity corresponding to the vanishing
of �E. The disorder energy scale depends on the external
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field as

�E = kBTd

[(
H

Hd

)−μ

− 1

]
, (2)

with kBTd a characteristic disorder energy scale, Hd the
depinning field where the energy barrier goes to zero, and μ

the creep exponent (μ = 1/4 for magnetic thin films) [6–8].
Equations (1) and (2) imply the so-called creep law ln V ∼
H−1/4, which is valid for fields below the depinning field
H < Hd . For fields just above the depinning field H � Hd , the
universal power-law behavior for the velocity field response is
due to the underlying zero-temperature depinning transition
and can be observed in the finite-temperature domain wall
dynamics [9,10]. Above the depinning field H > Hd , the flow
regime is encountered where the velocity grows linearly with
the field

V = mH, (3)

with m the mobility. The overall nonlinear velocity field
response has been observed in a wide variety of magnetic
materials with its universal features characterizing creep and
depinning regimes well accounted for by three parameters:
the depinning field Hd , the depinning temperature Td , and the
velocity scale Vd = V (Hd ) [8,10,11].

The use of numerical models assists in accounting for the
full domain wall dynamics. Simple models such as the elastic
line in disordered media have been useful in revealing universal
features of domain wall motion [7,12–14]. The approach of the
elastic line has the great advantage of allowing one to obtain
very precise exponents describing the system dynamics in the
elastic limit, which can be compared with analytical results.
However, the purely elastic description leaves behind several
experimentally well known features of domain wall dynamics:
topological defects, fingering, overhangs, bubbles, plasticity,
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and multivalued interfaces. Even more, nucleation phenom-
ena cannot be assessed with this approach, thus rendering
impossible the recreation of the vast majority of experimental
protocols.

In addition, two-dimensional spin models, such as Ising,
XY , and Heisenberg models, have been adapted for the study
of creep and depinning in domain wall motion [15–20]. Such
spatial models indeed permit one to simulate bubble domains
and domains with overhangs, but their intrinsic periodic pin-
ning made these models not truly realistic or comparable to the
experiments. For example, most simulations of driven domain
walls with these approaches were done for the random-field
type of disorder instead of the random-bond type.

Moreover, micromagnetic simulations stand as a relevant
technique to address material-specific properties. They have
been intensively used to capture domain wall static and
dynamic features, particularly in low dimensions and small
systems [21–24]. However, since this approach is detailed
and exhaustive, it is not always helpful to distinguish and
individualize the essential ingredients ruling the domain wall
dynamics. On the computational side, the main disadvantage
of this technique is the large amount of resources or time
needed for its simulation.1 Micromagnetic simulations are
mainly used to study glassy domain wall dynamics close to
the depinning transition, and in most of the studies only the
T = 0 K case is considered. However, recently this technique
has also been used to address the creep regime of domain wall
motion in Pt/Co/Pt thin magnetic films [26], where one needs
to simulate extended domain walls, i.e., domain walls whose
extent is far much larger than its internal width. Although the
creep regime has been reached [26], some features that are
not fully compatible with experimental observations have also
been observed, for example, two distinct creep regimes.

When possible, it is desirable for numerical models and
methods to mimic experimental protocols. Polar magneto-
optical Kerr effect (PMOKE) microscopy is commonly used
to measure domain wall velocity [27–33]. In a typical ex-
perimental protocol, one or several nuclei are first created,
which usually present a bubblelike configuration. Then finite-
time magnetic field pulses are applied, impelling the original
domains to grow. The measured domain wall displacement
is proportional to the pulse duration, thus giving a mea-
sure of the domain wall velocity. The insight that these
experimental techniques can provide is naturally limited by
several experimental factors: the camera resolution, magnetic
field pulse characteristics such as maximum amplitude and
minimum width, control of the sample temperature, and sample
characteristics such as the defect density and disorder of the
sample under study. Therefore, having a model capable of
reproducing the experimental conditions is highly desirable
and should allow one to reach more quantitative comparisons
between experiments and simulations.

1A standard tool to perform micromagnetic simulations is MU-
MAX [25]. The best performance reported for this software is
∼3.5 × 108 cell updates per second in a GTX Titan Xp. For our
implementation of the scalar field model, in a GTX Titan Xp, we
are able to update ∼15 × 108 cells/s.

Here we adapt a very well known model in statistical
physics, a two-dimensional scalar field model with a double-
well potential, to describe the phenomenology of domain
wall motion in thin ferromagnetic films. The model lies in a
mesoscopic scale, between the elastic line and micromagnetic
models, allowing the coverage of large spatial and temporal
scales while preserving a fairly detailed control of system
parameters. After presenting the model and key considerations
to obtain domain wall velocities, we show that simulated
velocity field characteristics display the well known shape in
both depinning and creep regimes, including theμ = 1/4 creep
exponent value. Furthermore, we investigate the dependence
of the domain wall dynamics under different quenched dis-
orders, stressing how the present model can be used to study
geometrical properties of magnetic domains.

II. MODEL

We are interested in the study of magnetic domain wall
dynamics in thin films with strong perpendicular anisotropy.
In this kind of system, the magnetic moment of the material
is given by the time-dependent vector field �m( �ρ,τ ), where �ρ
and τ are the two-dimensional space and time coordinates,
respectively; �m( �ρ,τ ) is constrained to point perpendicularly
to the sample plane, which we are going to take as the
x-y plane. When domains are nucleated in the sample, the
magnetization inside domains will still point perpendicularly
to the sample plane (z direction), with the same magnitude as
in the rest of the sample, but with a different orientation. In the
domain wall region, which is typically much smaller than the
domain region, the magnetization will change smoothly from
one value of magnetization to the other. In a system with a
strong perpendicular magnetic anisotropy, the magnetization’s
x and y components will be approximately zero in the whole
sample, except for the domain wall region. As the universal
domain wall glassy dynamics is independent of the domain
walls magnetic structure, we will consider the evolution of the
magnetization z direction, neglecting the contribution of the
remaining magnetization components.

The scalar field ϕ( �ρ,τ ) = mz( �ρ,τ ) will represent the value
of the magnetization z component, taking real values in the
interval [−1,1], at position �ρ in the x-y plane. This scalar
field is a nonconserved variable: It may alter its value without
a corresponding flux. The evolution of such a nonconserved
scalar field can then be modeled, in the limit of strong
perpendicular anisotropy and strong damping [34], through

∂ϕ( �ρ,τ )

∂τ
= −�

δH
δϕ( �ρ,τ )

+ ξ ( �ρ,τ ), (4)

where � is a damping parameter, H is the free energy of
the system that may contain different terms describing the
interactions and disorder present in the system, and ξ ( �ρ,τ )
represents an uncorrelated thermal bath modeled as a white
noise, with 〈ξ ( �ρ,τ )〉 = 0 and 〈ξ ( �ρ,τ )ξ ( �ρ ′,τ ′)〉 = 2�T δ(τ −
τ ′)δ( �ρ − �ρ ′), with T acting as an effective temperature [35].
Equation (4) is the simplest stochastic dynamical model in
which a single nonconserved scalar field ϕ( �ρ,τ ) is in contact
with a constant temperature heat bath. It has been already used
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in related problems such as the formation of magnetic pat-
terns [36,37] or geometric pinning in magnetic films [38,39].

We model the system free-energy Hamiltonian H by fol-
lowing the modified φ4 model, as discussed by Jagla in
Refs. [36,37]. In our implementation the model has three
main contributions H = Hloc + Hrig + Hext, as described in
the following. The local term Hloc mimics the out-of-plane
easy axis magnetization and thus favors the values ϕ = ±1. It
is given by

Hloc = α

∫ (
−ϕ( �ρ,τ )2

2
+ ϕ( �ρ,τ )4

4

)
d �ρ, (5)

with α proportional to the out-of-plane magnetic anisotropy
constant. A rigidity term discourages spatial variations of ϕ,

Hrig = γ

∫ | �∇ϕ( �ρ,τ )|2
2

d �ρ, (6)

with an intensity γ proportional to the exchange stiffness
constant. Finally, the external magnetic field is incorporated
through the term

Hext = −H

∫
ϕ( �ρ,τ )d �ρ, (7)

with a positive H favoring the ϕ = +1 state.
We introduce two supplementary features to this simple

model. First, we consider a prescription from the micromag-
netic approach ensuring conservation of the local magnetiza-
tion norm, which amounts to adding a saturation term 1 − ϕ2

multiplying the external field H , which ensures that ϕ will
not be greater than one (see Ref. [37] for a discussion). As a
consequence, we are adding a term −Hϕ2 to the model, which
has also important physical consequences as will be shown
below [Eq. (14)]. Second, we introduce structural quenched
disorder by perturbing the value of α in the Hloc term. Instead
of α we now use α + εζ ( �ρ ), with ζ ( �ρ ) a short-range correlated
random variable with uniform distribution in [−1,1] and ε the
intensity of the disorder. This implementation of the disorder
is compatible with the so-called random-bond disorder [7].
The value of α + εζ ( �ρ ) is then a spatially fluctuating quantity
giving the height of the two-well potential, which controls the
strength of the system anisotropy energy, and is a measure of
the field required to revert the magnetization locally.

Using in Eq. (4) the Hamiltonian H = Hloc + Hrig + Hext

with quenched disorder in the local term plus a saturation
prescription, the evolution of the field ϕ( �ρ,τ ) is given by

∂ϕ( �ρ,τ )

∂τ
= �[1 − ϕ2( �ρ,τ )]{[α + εζ ( �ρ )]ϕ( �ρ,τ ) + H }

+�γ∇2ϕ( �ρ,τ ) + ξ ( �ρ,τ ). (8)

In a sense, the model in Eq. (8) is a simplification of the
phenomenological Landau-Lifshitz-Gilbert equation, which
provides a widely acceptable micromagnetic description of
the evolution of the local magnetic moment direction of the
material. With some variations, it has been proven success-
ful in modeling the magnetization of quasi-two-dimensional
systems [34,36–39].

For simplicity, under a linear transformation, Eq. (8) can be
reduced to the form

∂φ(�r,t)
∂t

= [1 − φ2(�r,t)]h + [1 + εζ (�r )][φ(�r,t) − φ3(�r,t)]

+∇2φ(�r,t) + η(�r,t), (9)

where we set

φ(�r,t) = ϕ( �ρ,τ ), �r = �ρ√
γ

α

,

t = τ�α, h = H

�α
,

η(�r,t) = α

√
�

γ
ξ ( �ρ,τ ). (10)

The last equality is imposed in order to ensure the proper
correlation of the new effective temperature variable. From
now on, all results will be expressed in reduced units �r , t ,
and h.

In order to numerically solve Eq. (9) and obtain φ(�r,t), we
work with discretized time and space variables. We define a
two-dimensional square grid with L × L cells. In each cell,
φ has a uniform value updated at each step of the calculus.
For the time integration of the equation, we use the first-order
numerical Euler method, with a time step of 0.1 and given
initial values. In order to implement the semi-implicit method
to stabilize the numerical solution, we go through a Fourier
transformation on the space variables, evaluating the exchange
term at t + �t rather than at t . For more details on the
numerical solution of Eq. (9) the reader may refer to [36].

III. RESULTS

In this section we first describe the adopted protocol and
how the velocity of the domain wall is computed. Then we
present results within the creep regime of domain wall motion
and discuss temperature effects and fitted parameters. Finally,
we present results depending on how the quenched disorder is
implemented in the model.

A. Domain wall velocity

To measure domain wall velocities we used the following
protocol inspired by experiments. As the initial condition for
all simulations, the scalar field φ(�r,t) is set to the value −1
in all system cells except those cells inside a circle of radius
R0, centered at the middle of the system, where it takes the
value +1. This initial condition is then relaxed by letting
the system evolve at zero field (h = 0) for a time �t0 until
the circle area reaches a stationary value. In order to apply
an external field promoting domain wall motion, a constant
field pulse of intensity h is then applied during a finite time
�t . Finally, during a time �t ′0 the system relaxes, evolving
at zero field again. In a system of size L = 4096 with ε = 1
in Eq. (9), �t0 = �t ′0 = 103 is enough to ensure that the
domain area reaches a stationary value at zero field. These
parameters are kept fix at that value throughout the rest of
the numerical simulations. Note that this sequence of steps is
equivalent to the sequence in which magnetic fields are applied

062122-3



NIRVANA B. CABALLERO et al. PHYSICAL REVIEW E 97, 062122 (2018)

FIG. 1. Evolution of the effective domain radius (circles), when a
field square pulse of h = 0.07 is applied (dashed lines) in a system at
zero temperature and with uniform disorder. The straight black line is
a linear fit of the data during the application of the field pulse, whose
slope is indistinguishable from the domain wall velocity obtained at
this field, as �R/�t (see the text). In the inset, the spatial distribution
of φ for a system with L = 4096 cells is shown. Black indicates the
value φ = −1, while gray and white correspond to φ = +1. The gray
circle corresponds to the initial domain (before the field pulse) and
the white part is the growth of the initial domain after the field pulse.

to a sample in a PMOKE microscopy experiment, where first
the sample magnetization is saturated in the −z direction, a
nucleation field is applied in order to generate a domain with
magnetization in the z direction, and a square pulse is applied
in order to accomplish the domain growth [28].

Domain wall velocities are hence computed measuring
the increase in domain area during the application of the
magnetic field pulse. The area of the domain corresponding
to φ = +1, A+, is calculated and registered during the whole
simulation. Assuming a circular shape for the domains, the
effective radius is computed as R = √

A+/π . The domain
velocities are then estimated as v = �R/�t . Here �R =
R(�t0 + �t + �t ′0) − R(�t0) is the effective domain radius
computed as the difference between the effective domain radius
before applying the field pulse and after a time �t ′0 following
the field pulse. As an example, the effective domain radius
evolution for a square field pulse of intensity h = 0.07 is shown
in Fig. 1.

In order to be consistent with PMOKE experiments, it is
important that numerical results for the velocity do not depend
on domain size or pulse duration. Therefore, we check that
the measured velocities are stationary and independent of the
domain size. Figure 2 presents results for two values of the
applied field for different initial domain sizes R0 and different
durations of time pulses �t . We find that if R0 or �t is
too small, velocities may be underestimated or overestimated,
respectively, especially for small values of h close to the
depinning field (discussed later). The underestimation of the
velocities for small domain radius may be due to the domain
curvature since the effective field sensed by the domain wall is
corrected with a term proportional to the inverse of the domain
radius (heff = h − c/R). This effect may not be assessed
experimentally with PMOKE microscopy since it occurs at
much smaller scales than the camera resolution. For instance,
a typical domain wall width is ∼10 nm. The curvature effect

0 500 1000
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0.08

v

Δt=103

Δt=104

Δt=3·10 4

103 104 105

Δt

R0=103

R0=500

h=0.07

h=0.06

h=0.07

h=0.06

(a) (b)

FIG. 2. (a) Velocity as a function of the radius of the initial domain
R0, for field square pulses of duration �t , at two values of the applied
field h, as indicated. The initial domain radius should be large enough
in order to ensure that the obtained velocities are not dependent on R0.
(b) Velocity as a function of the field pulse duration �t for two values
of the applied field and two sizes for the initial domain. Velocities may
be overestimated if the pulse duration is not large enough, especially
for small values of h.

according to Fig. 2 is important for R0 � 100 simulation cells,
which are equivalent to 1 μm by following the transformations
of Eq. (11), with the domain wall width estimated as

√
γ /α =

10 nm. In contrast, the overestimation of the velocities at small
durations of the field pulse may be due to a memory effect of
the domain walls [14]. Henceforth, to ensure a representative
value for the velocity, we use R0 = 103 for all simulations and
a carefully chosen value of �t for each field, in the range from
103 to 5 × 106.

When a system at zero temperature and no disorder is con-
sidered, a trivial linear behavior for domain wall velocities is
found, as shown in Fig. 3 with open squares, which corresponds
to a linear flow regime. The mobility m of the domain wall is the
proportionality factor between velocity and field and depends
on its internal structure. The particular form of the domain
wall, i.e., the domain wall profile, needs to be considered in
order to estimate the mobility. It is interesting to note that an
estimation of domain wall velocities in the flow regime can be
extracted from Eq. (9). Let us consider a system of size A with
a φ = +1 single domain of area A+; correspondingly, the rest
of the system A− = A − A+ has φ = −1. The total system
magnetization M can thus be written as

M = A+ − A−
A

= 1

A

∫
A

φ d�r, (11)

where the integral is taken over the whole system. Taking
time derivatives in Eq. (11) and using that A = A+ + A−, one
obtains

dA+
dt

= 1

2

∫
A

∂φ

∂t
d�r. (12)

To further simplify the problem, we can consider a rectangular
portion of the system, of length l, containing one domain wall
at a position x0(t), and hence A+ = lx0(t). Under the action of
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FIG. 3. Velocities and domain wall profiles calculated in a system
at zero temperature. (a) Domain wall velocities as a function of
magnetic field in a system without disorder, ε = 0 in Eq. (9) (squares)
and in a system with uniform disorder ε = 1 (circles). The dashed
black line is the linear velocity obtained from Eq. (14) with δ = 1.4,
the domain wall width obtained from fitting domain wall profiles
with Eq. (15). (b) Close-up view of the curve corresponding to
the disordered system. (c) Domain wall profiles as a function of
distance for three simulation snapshots, separated by t = 10 in a
nondisordered system for h = 1. Fits of these curves with the function
φ(x) = tanh[(x − x0)/δ] are also shown.

an applied field h, the domain wall velocity can be obtained as

v = dx0(t)

dt
= 1

l

dA+
dt

. (13)

Equations (12) and (13) therefore relate the domain wall
velocity to the time evolution of the scalar field φ(t), which
is described by Eq. (9). For the case of a system without
disorder (ε = 0) at zero temperature (T = 0), such as the one
considered in Fig. 3, the velocity can be expressed in a simple
form

v = 1

2

∫
[(1 − φ2)(h + φ) + ∇2φ]dx = δh, (14)

where the integral was solved by using a functional form of
the domain wall profile given by the expression

φ(x) = tanh

(
x − x0

δ

)
. (15)

For this simple model, the mobility is thus equal to the domain
wall width δ. Figure 3(c) presents three domain wall profiles
φ(x) for the direction (x,L/2), taken with a time difference of
t = 10, corresponding to the case h = 1 and without disorder
at zero temperature. These profiles can be well fitted with
Eq. (15), giving a value δ = 1.4.2 In Fig. 3 we show with a
dashed line the linear relationship of Eq. (14) between v and h,

2In the φ4 model, where the double well and the elastic terms are
written typically as − 1

2 rφ2 + uφ4 and 1
2 c( �∇φ)2, respectively, the

soliton solution for the domain wall profile is φ(x) = ±φ0 tanh[(x −
x0)/(

√
2
√

c/r)], where φ0 = ±√
r/4u. Since we set in our model

r = α, u = α/4, and c = β, we obtain the solution φ = ± tanh[(x −
x0)/(

√
2
√

β/α)]. Thus, for our model, δ = √
2
√

β/α. In reduced
units according to Eq. (11), δ = √

2 ∼ 1.4.

0 0.02 0.04 0.06 0.08 0.1
h

0

0.04
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v

T=0
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T=0.01

0.058 0.06
hd

test

0.2

0.4

0.6

β

hd=0.0598

FIG. 4. Velocity as a function of magnetic field at three tempera-
tures in a system with uniform disorder. Dashed line indicates the
flow regime, where velocities grow linearly with slope δ = 1.4.
The pointed vertical line indicates the depinning field hd = 0.0598.
The inset shows β values as a function of htest

d . The horizontal dashed
line indicates the expected value β = 0.245 from which the depinning
field hd is estimated.

using δ = 1.4 for the mobility, showing fairly good agreement
with the measured velocities in the so-called flow regime.

When disorder is considered (at zero temperature) the same
linear behavior is observed at large field values, as shown in
Fig. 3(a) (circles) for a uniform disorder with ε = 1. However,
when the field is decreased the domain wall movement is
strongly impeded due to the presence of disorder, resulting in
a strong decrease of the velocity below h ≈ 0.06, as shown in
Fig. 3(b). A closer inspection of this behavior is shown in Fig. 4.
At zero temperature a power-law vanishing of the velocity is
expected when the depinning field is approached from above,
v ∼ (h − hd )β , with hd the depinning field and β the depinning
exponent (see Ref. [14] and references therein). In order to
estimate the depinning field from the numerical results, one
possibility is to use the method proposed in Ref. [40]. With
this method, from a power-law fit of the velocity against
(h − htest

d )/htest
d , a value for the depinning exponent β(htest

d ) can
be obtained. Based on the obtained β values as a function of
htest

d (see the inset in Fig. 4), the depinning field corresponds to
the point where the theoretical β = 0.245 value [41] is reached,
resulting in hd = 0.0598. This value is indicated with a pointed
vertical line in the main panel of Fig. 4.

B. Creep and depinning regimes

Domain wall velocities for finite-temperature values as a
function of the applied field are shown in Fig. 4 for two different
non-null temperatures T = 0.001,0.01. Stationary velocities
values are observed at fields smaller than the depinning field,
h < hd (T = 0), since temperature allows the activation over
energy barriers, as expected in the creep regime. As indicated
by Eq. (1) and the field dependence of the energy barrier, a
linear relationship between ln v and h−1/4 should be observed
in the creep regime. Such a creep plot is shown in Fig. 5 for the
two finite-temperature data sets. It shows that the numerical
data are compatible with a creep exponent μ = 1/4 for the
smaller field values. The inset of Fig. 5 shows the dependence
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 v

105<Δt<2.6·10 6

Δt=105

FIG. 5. Creep plot for a system with uniform disorder at two
different temperatures. A linear behavior, highlighted by the black
dashed lines, is observed for small field values, indicating that the
system is in a regime compatible with the creep regime. The inset
shows the data corresponding to T = 0.01 again with open squares.
These stationary velocities were computed from the simulation of
systems where the field was applied during time lapses �t , varying
from 2.6 × 106 to 105. Closed squares in the inset correspond to
velocities obtained at T = 0.01, but with fixed �t = 105, and are
shown in order to emphasize that some care should be taken in order
to avoid the overestimation of velocities.

of the velocity on the pulse duration �t in a creep plot, showing
how the stationary velocity limit is reached at increasing �t

for low fields. This should be carefully taken into account in
numerical simulations.

In order to discern how far one can progress on the
comparison between the model and experimental results, we
use the same fitting procedure as recently used for experimental
data [10,11]. This allows one to extract the three key parameters
describing the glassy dynamics within creep and depinning
regimes: the depinning field hd , the depinning temperature
Td , and the velocity scale vd = v(hd ). The fitting procedure is
described in detail in Ref. [11]. In brief, the depinning field and
the velocity scale are first estimated using the inflection point
of the v(h) curve, which allows one to estimate the depinning
temperature from the slope of the creep plot. Then the full
model [Eqs. (1) and (2)] is fit, allowing one to adjust the three
values. Finally a fine-tuning is achieved using that, just above
depinning, the velocity presents signals of the zero-temperature
depinning transition3

v(h,T = 0) = vT

y0

(
h − hd

hd

)β

, vT = vd (T )

(
Td

T

)ψ

, (16)

with y0 = 0.65 a fixed universal constant and ψ = 0.15
the thermal rounding exponent [9,10,13]. Results of the
fit using the creep law [Eqs. (1) and (2)] and the de-
pinning transition scaling [Eq. (16)] to the velocity field
numerical data are plotted in Fig. 6 for T = 0.01. Sum-
marizing, the values obtained for the depinning field are

3Note that vd (T ) ∼ T ψ when T 
 Td , thus leading to v(h,T 

T

ψ

d ) ∼ (h − hd )β (see Ref. [10] for details).

0.04 0.05 0.06
h

0

0.01

0.02

0.03

0.04

v

numerical results
depinning Eq. (16)
creep Eqs. (1) and (2)

(hd,vT)

(hd,vd)

T=0
h     hd

FIG. 6. Velocity field curve at T = 0.01, analyzed with the
method proposed by Diaz Pardo et al. [10] for experimental curves.
The dashed black line is a fit of data below the depinning field
hd , denoted by a vertical black line, following the creep law (1)
and (2). The dashed gray line corresponds to the prediction for the
depinning transition [see Eq. (16)] for the limit v(h → hd,T = 0). It
is obtained with the same adjusted parameters as the black line. The
closed black diamond indicates the point (hd,vd = v(hd )), the upper
boundary of the creep regime, while the open diamond corresponds
to vT = vd (Td/T )ψ (see the discussion in the text).

hd (T = 0.001) = 0.0558 and hd (T = 0.01) = 0.0490, for the
depinning temperature we get Td (T = 0.01)/T = (89 ± 1)
and Td (T = 0.001)/T = (495 ± 20), and for the velocity
scale vd (T = 0.01) = (0.010 ± 0.005) and vd (T = 0.001) =
(0.0070 ± 0.0005). It has been shown using experimental data
that values of vT = vd (Td/T )ψ are expected to coincide with
the velocity of the linear flow regime [10,11]. For our numerical
model, although the fit gives reasonably good values for hd

and Td , the value of vd gives a value of vT far below the
linear flow regime. This feature of the model is due to a large
crossover between the creep and the flow regimes, which is also
observed in velocity-force curves obtained with the elastic line
model [42]. Overall, we have shown that the numerical data
can be fit using the same fitting procedure as used to deal with
experimental data.

C. Models of disorder

Finally, since the specific model of disorder is, at least
partially, responsible of the domain wall dynamics, and in
order to stress potential applications of the present model,
we show how the velocity curve depends on the underlying
disorder model. We then study the variation of domain wall
velocities using three different disorder models. For the first
disorder type, already presented, the values assigned to the
disorder [ζ (�r) in Eq. (9)] were randomly chosen from a uniform
distribution over the range [−1,1], independently for each
numerical cell in the system. For the second disorder type, we
use a Voronoi tessellation of the system with NV = 1.5 × 106

Voronoi grains and give for each grain a constant ζ value
between −1 and 1 from a uniform distribution. Finally, as a
third disorder model, a filtered disorder is built by using a
standard low-pass filter with a cutoff frequency qc = 3 over an
independent random uniform distribution. These three disorder
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FIG. 7. Differences between the disorder types used illustrated
with a single realization. Each pair of images shows in top the value
of the disorder parameter ε along the first line of cells of each grid
showed in the bottom: (a) uniform disorder, (b) Voronoi disorder,
and (c) filtered disorder. Bottom images correspond to a portion of
50 × 50 cells.

types are shown in Fig. 7 for a fraction of 50 × 50 cells of the
two-dimensional system.

Numerical results for the velocity field curve for the dif-
ferent disorder models are shown in Fig. 8(a). As can be
observed, velocity scales are visibly dependent on the type
of disorder implemented. For a given field, velocity decreases
when the considered disorder model passes from the filtered
disorder to the uniform disorder and to the Voronoi disorder.

FIG. 8. (a) Velocity field curves for three different disorders types
at T = 0.01. (b) Creep plot for the three velocity field curves. (c)–(e)
Images showing the final configuration of the domains for different
fields values corresponding to similar velocities in the creep regime,
as indicated by the large closed symbols in (b). The shown domains
correspond to systems with (c) filtered, (d) uniform, and (e) Voronoi
disorders.

FIG. 9. (a) Velocity field curves for four different numbers of
Voronoi grains NV in the implementation of the disorder in a system
at T = 0.01. When the number of Voronoi cells is equal to the system
size (NV = 224 ≈ 1.7 × 107), the uniform disorder is recovered. The
shown domains correspond to systems with (b) NV = 224, (c) NV =
107, (d) NV = 5 × 106, and (e) NV = 1.5 × 106, for simulations with
different field values corresponding to similar velocities, indicated by
the dotted horizontal line.

In fact, the lowest depinning field is obtained for the filtered
disorder, while the greatest depinning field corresponds to the
Voronoi tessellation model. One can also observe that although
hd changes with the disorder, and Td and vd probably too,
the general shape of the velocity field curve seems to be
preserved. In fact, the creep plot presented in Fig. 8(b) shows
that the creep regime for the three different disorder models
can be well described using the universal creep exponent
μ = 1/4. The present model can also be used to investigate the
effect of different disorder types on domain wall geometrical
properties. Figures 8(c)–8(e) show the shape of the domain
for the three disorder types studied, all obtained at the same
velocity within the creep regime, as indicated by closed large
symbols in Fig. 8(b). A simple inspection shows that the
roughness of the domain’s shape increases with the value of
the depinning field, depending on the type of disorder model
used.

Up to now, we showed qualitatively how different domain
geometries and depinning fields may be obtained by changing
the disorder implementation, but the comparison was not fair
in the sense that the uniform disorder and the filtered disorder
have different correlation lengths and intensities. In contrast, a
uniform disorder can be recast as an extreme case of a Voronoi
tessellation, where the smallest possible area σ for the Voronoi
grain sizes is considered. Thus, the amplitude of the disorder
is not changed but the correlation length is. To explore this
point further, we tested two other Voronoi mean grain sizes
by generating Voronoi tessellations of NV = 5 × 106 and 107

cells. The four Voronoi tessellations correspond to a mean area
of the grains of σ = 1 and σ ∼ 1.7,3.4,11.2 when decreasing
the number NV , respectively. Velocity field curves are shown
in Fig. 9 for the four selections of NV . The main feature
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FIG. 10. Velocity field curves of Figs. 8 and 9 rescaled with
the mobility δ of the flow regime and the depinning field of each
curve. The curves correspond to a system at T = 0.01 for the five
different disorder implementations considered in this work (i.e.,
filtered, uniform, and Voronoi with three different mean grain sizes
σ ). The inset shows depinning fields plotted as a function of σ (see
the discussion in the text).

to highlight is that smaller depinning fields are obtained for
smaller grain sizes of the Voronoi tessellation. This dependence
of the depinning field on the Voronoi mean grain sizes was
observed before in micromagnetic simulations [43], although
we show here that the geometrical properties of domain walls
also depend on the Voronoi mean grain size [Figs. 9(b)–9(e)].

The way in which disorder is implemented in the system is
relevant for the overall behavior of the model, as may be seen
in Figs. 8 and 9, where we plotted velocity field curves and
showed examples of domains geometries for different disorder
implementations in a system at T = 0.01. However, some
universal features of domain wall dynamics are independent of
the implementation of the disorder, as may be checked with a
rough scaling of the curves. In Fig. 10 we show how the velocity
field curves can be approximately collapsed when each curve
is rescaled with its corresponding depinning field and with the
characteristic flow velocity at the depinning field v = δhd [40].
The depinning fields, obtained phenomenologically as the
inflection point of the curves [10], are hd = 0.018, 0.050,
0.061, 0.069, and 0.075, for the filtered, uniform, and NV =
107, 5 × 106, and 1.5 × 106 disorders, respectively. As can be
observed, small differences among the rescaled curves are still
present close to the depinning field hd . This is possibly due to
the fact that for each disorder model different energy scales Td

are expected and hence different effective temperature scales
T/Td ruling the thermal rounding.

In the inset of Fig. 10 the depinning fields for each curve
obtained with different disorder implementations are plotted
as a function of the mean grain size σ . The filtered disorder
distribution has a standard deviation �f = 0.24, while the
Voronoi disorder distributions have a standard deviation �V =√

2/3. Since we expect the depinning fields to be proportional
to the standard deviation of the disorder distributions, the
point corresponding to the filtered disorder in the inset of the
figure corresponds to hd (�V /�f ). The σ value for the filtered
disorder may be estimated as 2π/qc ∼ 2.09. The relation
between the depinning fields and the characteristic disorder

lengths σ is similar to the one observed in micromagnetic
simulations [43].

IV. CONCLUSION

In summary, we have presented a study of domain wall
dynamics in thin magnetic films using a versatile effective
two-dimensional model. The model can be recognized as
a generalization of the φ4 model of statistical mechanics,
commonly used to study phase transitions and critical phe-
nomena [35]. It includes exchange interactions, external field,
effective temperature, and disorder and can be easily extended
to consider dipolar interactions.

With the aim of conciliating numerical simulations with
experiments, we treated the numerical system using the same
protocol as in experiments. For example, the same sequence
of applied magnetic field pulses was considered and we dis-
cussed how to obtain stationary velocity values, independent
of the initial domain size and the pulse duration. We showed
that the lowest field velocity results are compatible with
the thermally activated creep regime. This is an important
numerical milestone as it opens the possibility to study creep
dynamics at large length and time scales with a simple but
realistic and material-parameter-tunable numerical model. We
showed that our numerical results are well described by
critical exponents commonly used in thin magnetic systems:
μ = 1/4, β = 0.245, and ψ = 0.15. This suggests that, in
the range of parameters explored here, the full spatiotemporal
description of the domain wall is compatible with the quenched
Edwards-Wilkinson universality class. A more quantitative
comparison, especially viable for the depinning regime, is
left as a second step, however. In particular, a question
arises to what extent elastic depinning scaling will hold in
situations where plasticity, bubbles, and overhangs become
more dominant. Furthermore, with the same fitting procedure
used to analyze experimental results, we obtained values for
the key nonuniversal parameters needed to describe domain
wall dynamics in the creep and depinning regimes.

Different disorders were finally considered, stressing the
versatility of the model. Properly modeling the disorder land-
scape in thin ferromagnets is key to the understanding of
domain wall dynamics and its influence on materials design.
The Voronoi tessellation disorder model appears as a tractable
model in this direction [43]. In particular, we found that within
the Voronoi tessellation disorder model the depinning field
and the domain wall roughness both increase with the mean
size of the Voronoi grains. We expect that fitting experimental
results with the presented model would provide experimental
values for the parameters characterizing the disorder, such
as the mean grain size and the energy scale of the disorder
landscape. Furthermore, an overall systematic exploration of
disorder-type effects on phase field and micromagnetic models
for domain wall dynamics is somehow missing in the field, and
the approach here presented appears as a good starting point
in this direction.

Prominent features of the studied model are its adapt-
ability to realistic model parameters and versatility to study
many different experimentally inspired protocols that may be
difficult to actually perform in the laboratory. For example,
besides the domain wall dynamics, a careful study of domain
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nucleation for different disorder types with varying intensity
can be performed with the same model.
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