



## Criticality and avalanches at the yielding transition of amorphous solids under deformation

## Ezequiel Ferrero

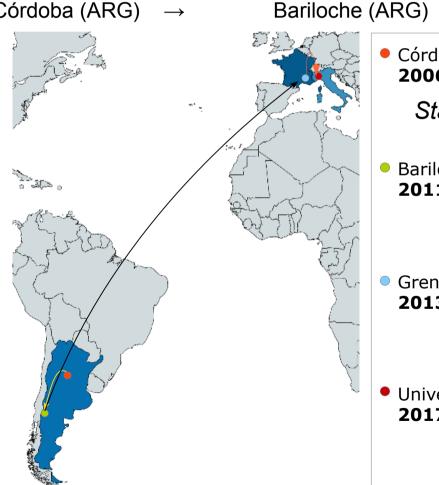
Università degli Studi di Milano

Università degli Studi di Napoli Federico II April 20<sup>th</sup> 2017

## Academic path and chronology



Córdoba (ARG)



Córdoba National University 2006-2011 Physics PhD. Advisor: Prof. S.A. Cannas

Grenoble (FRA)

Milano (ITA)

- Statistical Mechanics of classical spin models
- Bariloche Atomic Center (+stay at LPTMS Orsay) 2011-2013 postdoc. Drs. A.B. Kolton, S. Bustingorry, A. Rosso

### Disordered elastic systems

Grenoble Alpes University 2013-2016 postdoc. Prof. J-L Barrat

Amorphous solids

University of Milan 2017- postdoc. Prof. S. Zapperi

Metamaterials?

After Milan?.... back to Bariloche (CONICET researcher position)





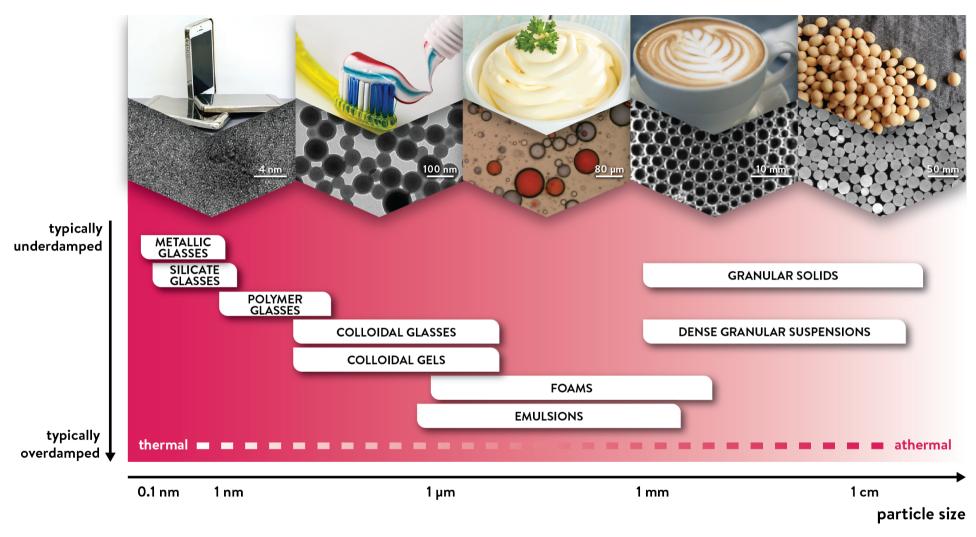
## Criticality and avalanches at the yielding transition of amorphous solids under deformation

## Ezequiel Ferrero

Università degli Studi di Milano

Università degli Studi di Napoli Federico II April 20<sup>th</sup> 2017

### Amorphous materials



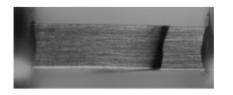
### very diverse systems... but they share common features

#### Structurally disordered

Solid-like (elastic) behavior below yield stress

Flow under stress bigger than threshold

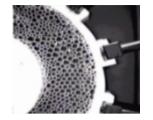
## Yield stress systems

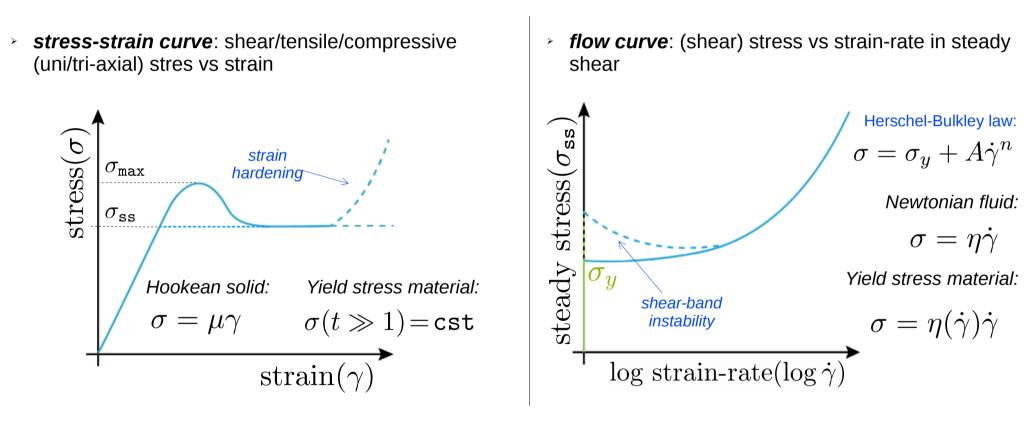


*"hard" amorphous* E~100 GPa (BMG)

"soft" amorphous

E~100 Pa (Foam)

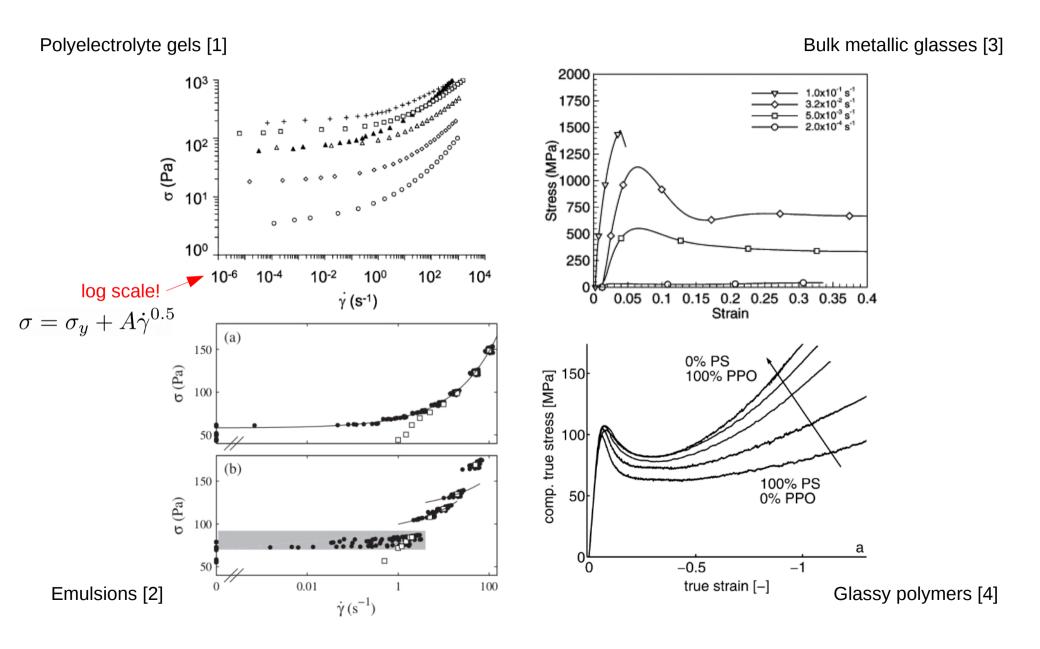




"Yielding transition": a **dynamical phase transition** between an **elastic solid**-like state and a **plastic flow** state when we overcome a **critical yield stress**.

$$\dot{\gamma} \sim (\sigma - \sigma_y)^{\beta} \qquad \beta = 1/n$$

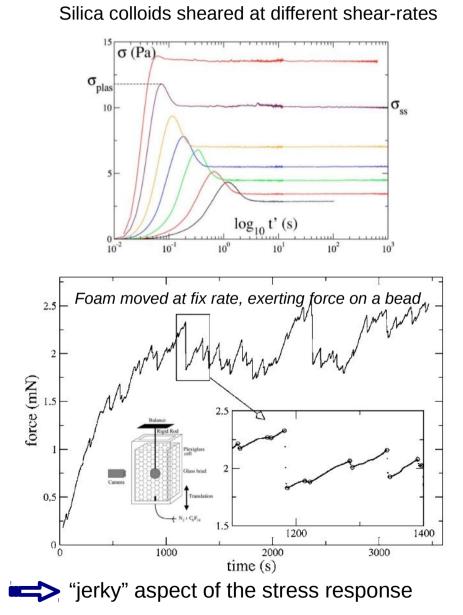
### Yield stress systems



[1] M. Cloitre et al. C. R. Physique **4** 221 (2003)[2] L. Bécu et al. Phys. Rev. Lett. **96** 138302 (2006)

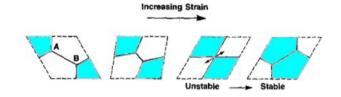
[3] J. Lu et al. Acta Materialia **51** 3429 (2003) [4] H.G.H. van Melick et al. Polymer **44** 2493 (2003)

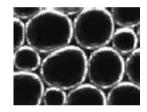
## Phenomenology: 1. Local rearrangements



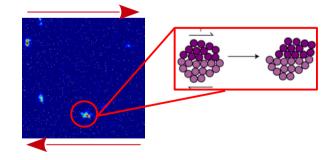
well identified, localized "plastic events"

In foams: "T1 event" (4 bubbles)





In general: tens/hundreds of particles involved

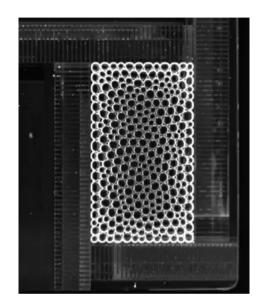


"plastic event" = "plastic rearrangement" = "shear transformation"

C. Derec et al. Phys. Rev. E **67** 61403 (2003) I. Cantat and O. Pitois *Phys. Fluids* **18** 083302 (2006) Princen and Kiss, *J Coll. Int. Sci.* **128** 176 (1989) "T1 event in a densely packed foam" by M. van Hecke, youtube (2014) A. Nicolas et. al EPJE **37** 50 (2014), A.S. Argon and H.Y. Kuo Mat. Sci. Eng. **39** 101 (1979)

## Phenomenology: 2. Medium elastic response

A foam under shear strain

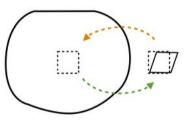


0.04 MD simulations: 40 0.035 0.03 20 0.025 0 0.02 0.015 -20 0.01 0.005 -40 0 -40 -20 20 40

imposed shear transformation and average displacement field

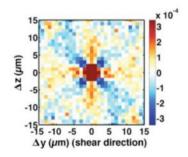
#### Continuum mechanics:

elastic response to a deformed inclusion

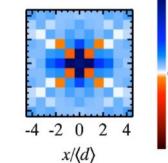


#### Experimental measurements:

correlations of local strain (sheared colloidal glass)



average stress change around an event (2D emulsion)

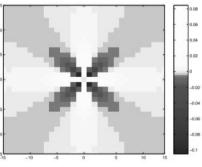


"Shearing a 2D foam" by M. van Hecke, youtube (2014) Jensen et al, PRE **90**, 042305 (2014) Desmond and Weeks, PRL **115**, 098302 (2015)

"Eshelby" propagator for the strain (stress) redistribution

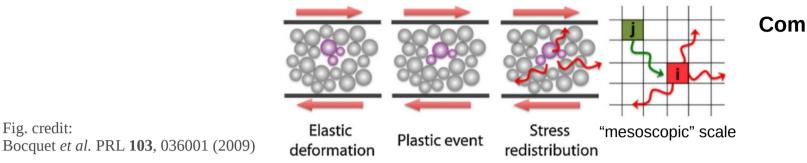
$$G^{2D}(r,\theta) = \frac{1}{\pi r^2} \cos(4\theta)$$

*Quadrupolar* in symmetry, *dipolar* in terms of interaction range



F. Puosi, J. Rottler, J.-L. Barrat PRE **89** 042302 (2014) J.D. Eshelby Proc. Roy. Soc. A **241** 376 (1957) Picard *et al.* EPJE **15** 371 (2004)

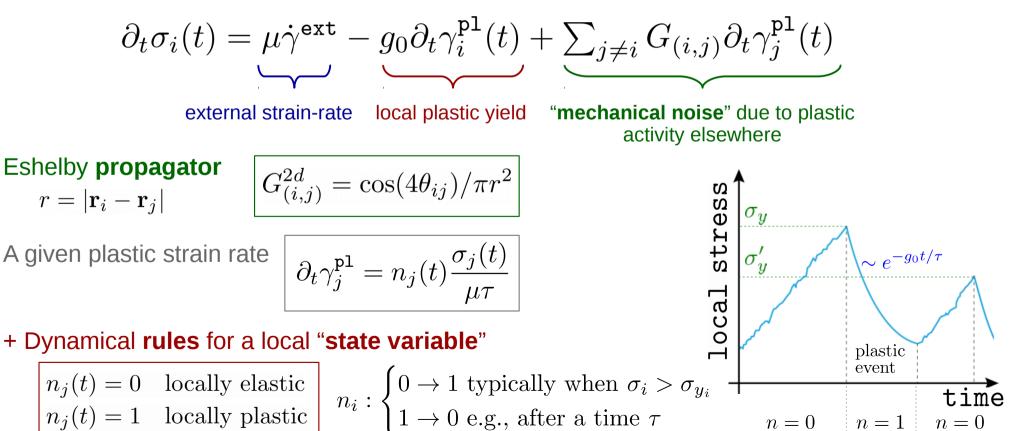
## Coarse-grained Elasto-Plastic Models (EPM)



#### **Common simplifications:**

- Scalar
- Athermal
- Overdamped
- p.b.c.

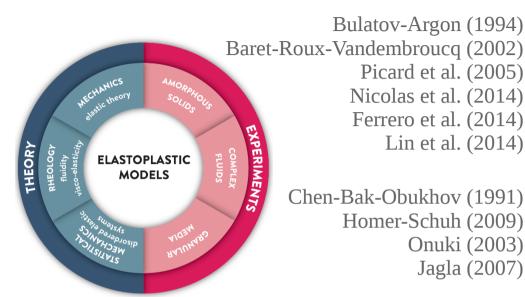
**Scalar** stress field (e.g., shear component) in a grid, representing the stress in **each block** 



06/29

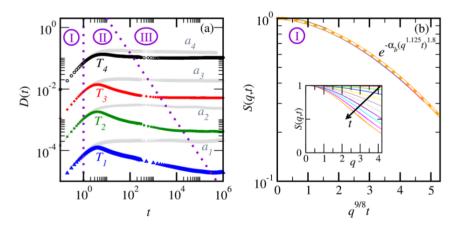
Fig. credit:

## EPM: phenomenological and toy models



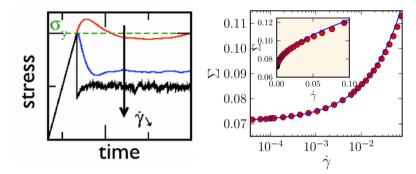
Also... Talamali (2011), Martens (2012), Budrikis (2015), Papanikolau (2016)

### Relaxation in yield-stress systems

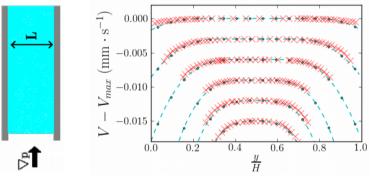


EEF, K. Martens, J.-L. Barrat PRL 113, 248301 (2014)

### Stress-strain and flowcurves

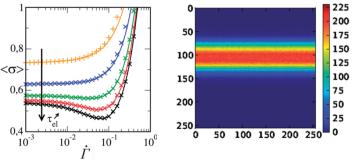


### Flow and fluctuations in microchannels



A. Nicolas and J.-L. Barrat, PRL 110, 138304 (2013)

### **Shear localization**



Martens, Bocquet, Barrat, Soft Matter 8, 4197 (2012)

**AVALANCHES** 

## Outline:

0) Avalanches in experiments, yielding transition and mean-field approaches.

1) Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition *Chen Liu, Ezequiel E. Ferrero, Francesco Puosi, Jean-Louis Barrat, Kirsten Martens Phys. Rev. Lett.* **116** 065501 (2016)

2) Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids *Kamran Karimi, Ezequiel E. Ferrero, Jean-Louis Barrat Phys. Rev. E* **95**, 013003 (2017)

PSM group











Francesco



Kirsten



Jean-Louis

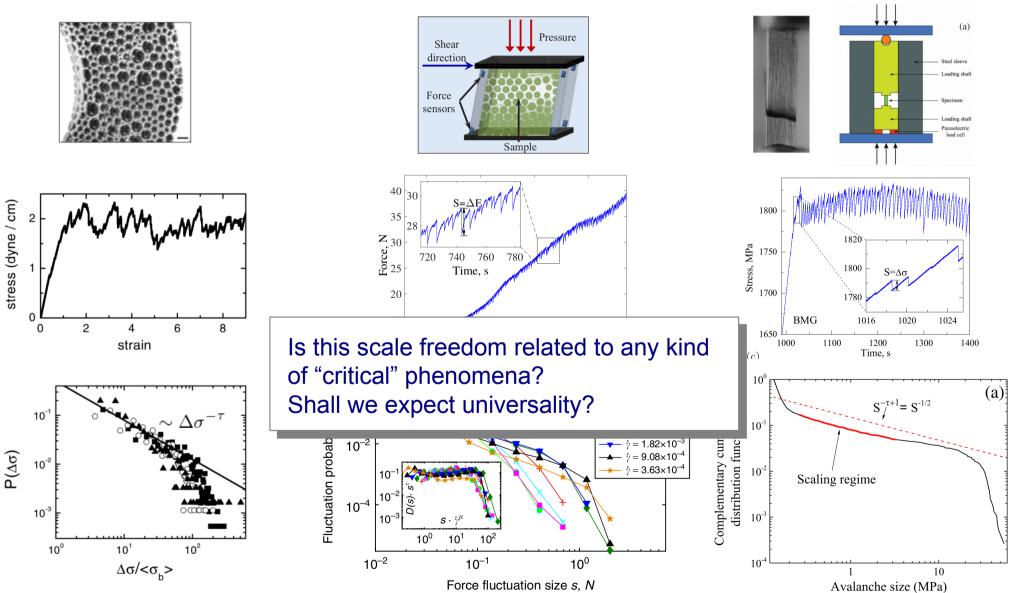


Kamran

### Avalanches: experiments

#### Plastic flow and stress drops

### Granular systems



J. Lauridsen et al. PRL 89 098303 (2002)

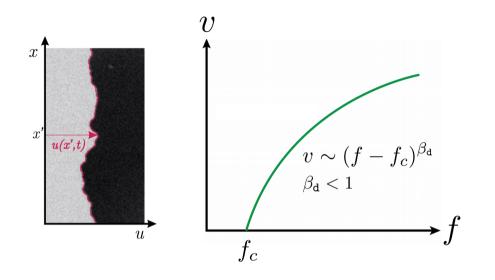
Foams

D. Denisov et al. NatComm **7:**10641 (2016), SciRep **7:**43376 (2017)

J. Antonaglia et al. PRL **112** 155501 (2014)

Bulk metallic glasses

### Dynamical phase transitions depinning and yielding (similarities, but also, important differences)



accumulated local plastic strain  $\gamma(\vec{x})$   $\dot{\gamma}^{p1}$   $\dot{\gamma}^{p1} \sim (\sigma - \sigma_c)^{\beta_y}$   $\beta_y > 1$  $\sigma_c$ 

Img. Credit: Lin et al., PNAS 111 14382 (2014)

Various depinning-analogy proposals\* (*long-range elastic interactions case*)

$$\eta \partial_t \gamma_i^{\mathtt{pl}} = \mu G_{ij} \gamma_j^{\mathtt{pl}} + F_p(\{\gamma_i^{\mathtt{pl}}, i\}) + \sigma$$

Divergent length scale and associated avalanche dynamics?

$$\xi \sim |\sigma - \sigma_c|^{-\nu}$$
,  $\nu = ?$   $S = ?$ 

Note: collective activity builds not-compact objects

depinning:  $d_{\mathrm{f}} \geq d$  yielding:  $d_{\mathrm{f}} < d$ 

\*e.g., J. Weiss et al. PNAS **111**, 6231 (2014) Dahmen et al. PRL **102** 175501 (2009)

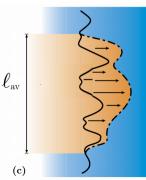
More than 30 years of research

$$\eta \partial_t u(x,t) = c \partial_x^2 u(x,t) + F_p(u,x) + f$$

Interface is rough and self-affine at threshold  $w \sim \ell^{\zeta}$ Divergent length and avalanches:

$$\ell \sim (f - f_c)^{-\nu} , \ \nu = \frac{1}{2-\zeta}$$
  
 $P(S) \sim S^{-\tau} , \ \tau = 2 - \frac{2}{d+\zeta}$ 

D. Fisher Phys. Reports (1998) EEF et al., Comp. Rend. Phys. (2013)



### Avalanches: mean-field approaches

Fully-connected network of N yield stress blocks  $\sigma_i$   $i = 1, \ldots, N$ 

1) We **push** blocks towards instability (increase stress)  $\sigma_i 
ightarrow \sigma_i + \delta \sigma$ 

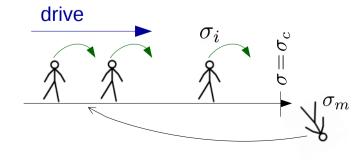
2) Block *m* reaches the threshold  $(\sigma_c = 1 \quad \forall i)$ 

- the stress in *m* drops by a <u>random</u> amount '*u*'
- all other blocks receive stress "kicks"

3) We repeat (2) while blocks yield, "avalanche size" is  $S = \sum_{m} u_{m}$ 4) We resume from (1)

$$\omega = 0 \qquad P(\eta) = \delta(\eta)$$

All "kicks" are positive (depinning case)



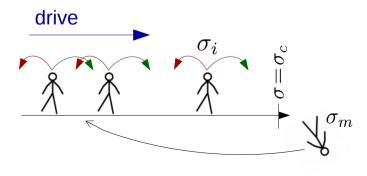
$$\sigma_m \to \sigma_m - u(1+k) \qquad \begin{array}{c} u \sim 1 \\ k \to 0 \end{array}$$

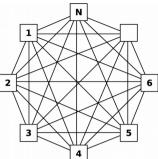
$$\sigma_i \to \sigma_i + \frac{u}{N} + \frac{\eta}{\sqrt{N}}$$

$$\eta \text{ Gaussian rn, } \langle \eta \rangle = 0, \text{ variance } \omega$$

$$\omega > 0$$
  $P(\eta) \sim e^{-\eta^2/2\omega}$ 

"kicks" are positive and negative (yielding case)





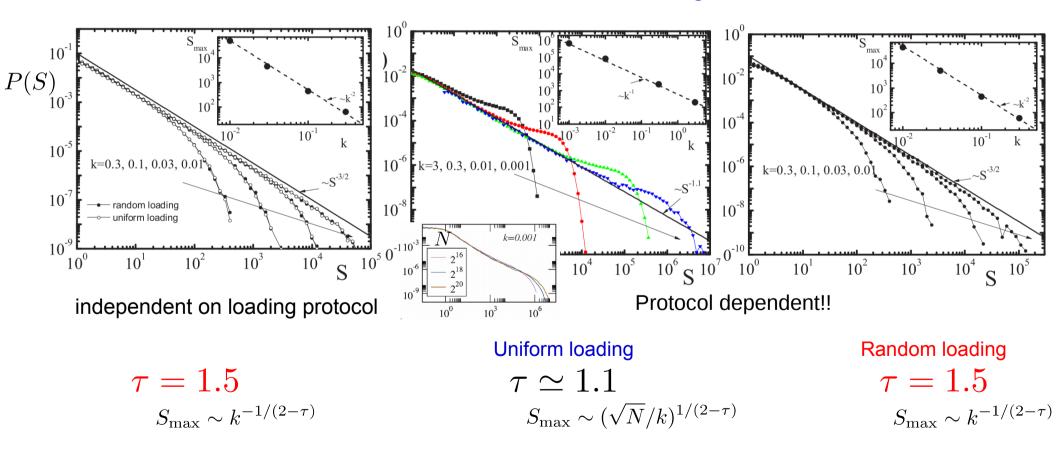
### Avalanches: mean-field approaches (by simulation)

E. Jagla PRE 92 042135 (2015)

 $\sigma_m \to \sigma_m - u(1+k)$   $P(S) \sim S^{-\tau} f(S/S_{\max}(k))$  critical point:  $k \to 0$ 

Depinning case  $\omega = 0$ 

Yielding case  $\omega > 0$ 



The model which catches the "**non-positive**" nature of the **Eshelby propagator** yields an exponent **different from depinning.** Yet, random triggering restores a constant rate stochastic process for instability and τ=3/2.

## Arbitrary overview of mean-field results

### Depinning

#### D.S. Fisher, K.A. Dahmen et al.

Depinning model for the displacements (plastic "slips") in a solid

$$\eta \partial_t u(\mathbf{r}, t) = F + \sigma_{\text{int}}(\mathbf{r}, t) - f_R[u, \mathbf{r}]$$

$$\sigma_{\rm int}(\mathbf{r},t) = \frac{J}{N} \int_{-\infty}^{t} dt' [u(\mathbf{r}',t')] - u(\mathbf{r},t)]$$

flow curve

avalanches size

local distances

to threshold

distributions

 $x \equiv \sigma^y - \sigma$ 

 $\dot{\gamma} \sim$ 

J > 0 homogeneous positive interaction

 $\beta = 1$ 

 $\tau = 3/2$ 

 $\theta = 0$ 

#### **Hébraud-Lequeux**

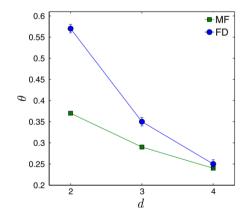
Evolution equation for the probability distribution of local (mesoscopic) stresses

$$\begin{array}{|c|c|} \hline \partial_t P(\sigma,t) = -G_0 \dot{\gamma} \partial_\sigma P - \frac{1}{\tau} \theta(|\sigma| - \sigma_c) P + \Gamma \delta(\sigma) + D(t) \partial_\sigma^2 P \\ \hline D(t) = \alpha \Gamma(t) \quad \text{rate of plastic activity: } \Gamma(t) = \frac{1}{\tau} \int_{|\sigma| > \sigma_c} d\sigma P(\sigma,t) \\ \hline \text{Unsigned feedback} & \text{Yield stress system when } \alpha < \alpha_c \end{array}$$

### Alternative to HL:

Lin-Wyart (based on Lemaitre-Caroli) Power-law distributed unsigned kicks

$$\theta = \frac{1}{\pi} \arctan\left(\frac{\pi A}{v}\right)$$



*P*(*x*): "density of shear transformations" How many incipient STZ are there?

$$\dot{\gamma} \sim (\sigma - \sigma_c)^{\beta} \qquad \beta = 2^{\dagger}$$
$$P(S) \sim S^{-\tau} \qquad \tau \simeq 1.1$$
$$P(x) \sim x^{\theta} \qquad \theta = 1$$

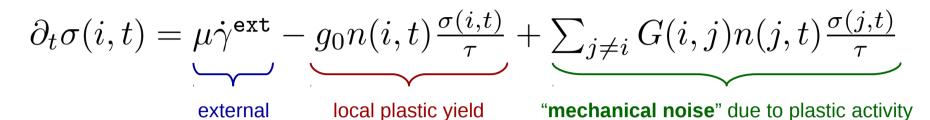
- (closer to experiments)
- (numerical) 1

D.S. Fisher Ph.Rep. 301, 113 (1998), K.A. Dahmen et al. PRL 102 175501 (2009), NPHYS 7 554 (2011) P. Hébraud and F. Lequeux PRL 81 2934 (1998) E. Agoritsas et al Eur. Phys. J. E **38**, 71(2015)

J. Lin and M. Wyart, PRX 6 011005 (2016) A. Lemaitre and C. Caroli arXiv:0609689

## Our EP model

C. Liu, EEF, F. Puosi, J-L Barrat, K Martens PRL 116 065501 (2016)



Eshelby propagator

$$G_{2d}(i,j) = \cos(4\theta_{ij})/\pi r^2 \quad r = |\mathbf{r}_i - \mathbf{r}_j|$$

strain-rate

Euler integration + pseudospectral method (intensive use of FFT)

$$\hat{G}_{2d} = -4 \frac{q_x^2 q_y^2}{q^4}$$
$$\hat{G}_{3d} = -4 \frac{q_x^2 q_y^2 + q_z^2 q^2}{q^4}$$

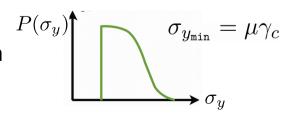
Massively parallel implementation on GPUs

- Simplifications: Scalar
  - Athermal
  - Overdamped
  - p.b.c.

#### rules for local state variable

$$n_i: \begin{cases} 0 \to 1 \text{ when } \sigma_i > \sigma_{y_i} \\ 1 \to 0 \text{ when } \int dt' |\dot{\gamma_i}^{\text{tot}}(t')| \ge \gamma_c \end{cases}$$

new  $\sigma$  chosen after yielding

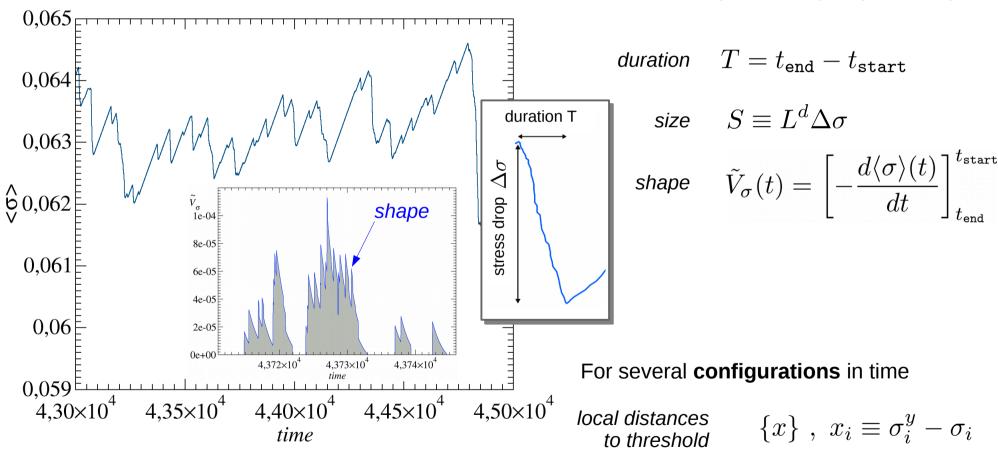


A. Nicolas, K. Martens, J-L Barrat EPL 107 44003 (2014)

### Avalanches: Methods

For different imposed strain rates...

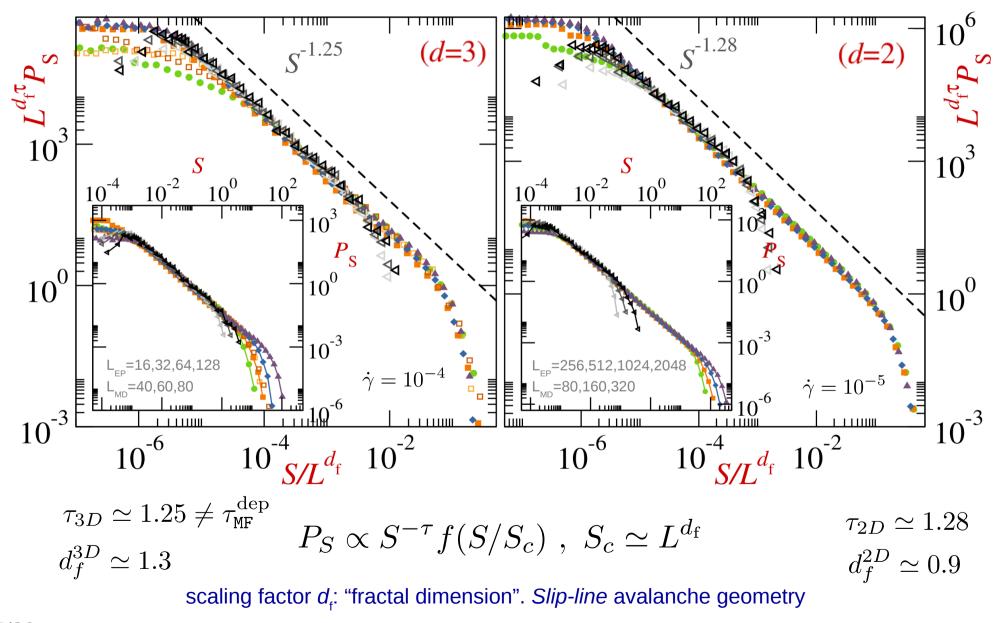
#### **Observables:**



For **each event** (stress-drop  $\Delta \sigma$ ) we compute:

### Stress drop size distribution at very low shear rates

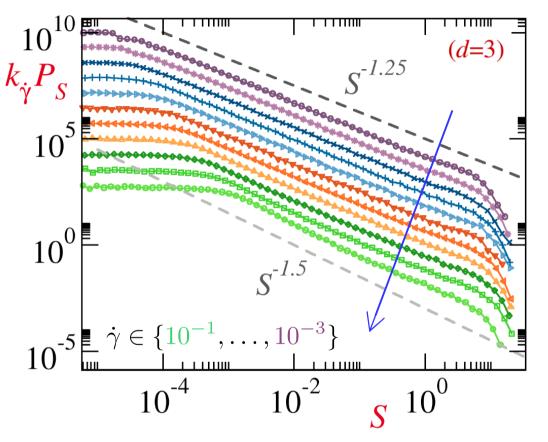
... for different system sizes, comparing with <u>quasistatic</u> MD simulations (grayscale triangles)



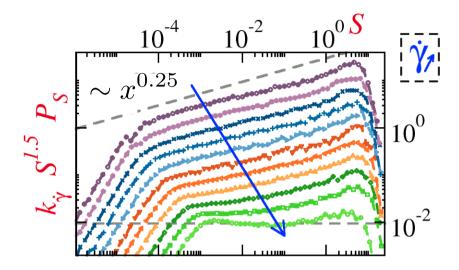
17/29 Talamali et al. PRE **84** 016115 (2011)  $\tau_{2D} = 1.25 \pm 0.05$  (EPM quasistatic)

Salerno and Robbins PRE **88** 060206 (2013)

Size distributions and crossover to mean-field behavior



(curves arbitrarily shifted by  $k_{\dot{\gamma}}$  )

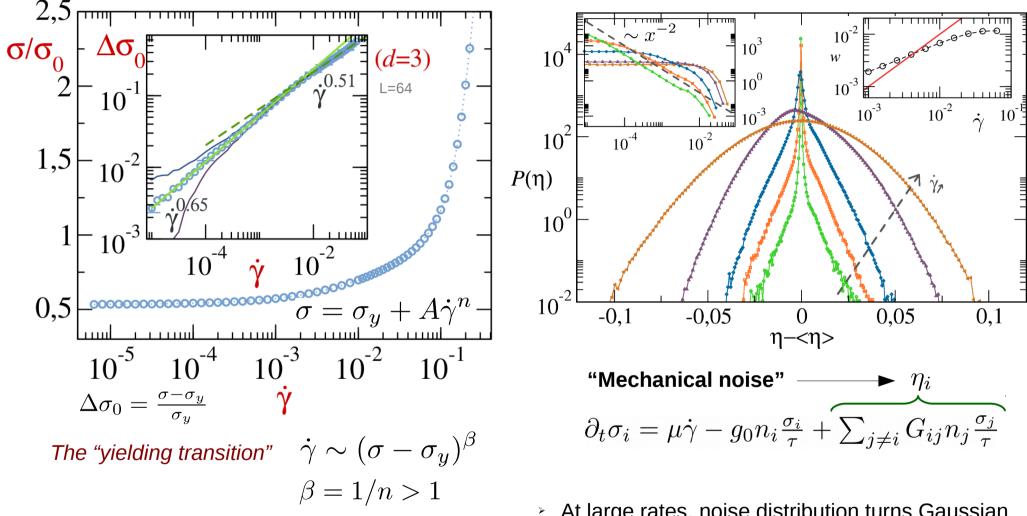


- Large strain-rates "randomizes" the stress signal, by overlapping uncorrelated plastic activity.
- Crossover to "random triggering" (or depinning) mean-field exponent when we go away from the yielding point

 $\tau: 1.25 \rightarrow 1.5$ 

Be  $\xi^d$  the size of a "correlated event", with  $\xi \sim |\langle \sigma \rangle - \sigma|^{-\nu} \sim \dot{\gamma}^{-\nu/\beta}$ ,  $\beta = 1/n$ In this regime, many events may "fit" in  $L^d$ .  $\Delta \sigma$  results from this superposition.  $S \equiv \Delta \sigma L^d$  cutoff is controlled by L

Flow-curve and crossover to mean-field "randomized" behavior

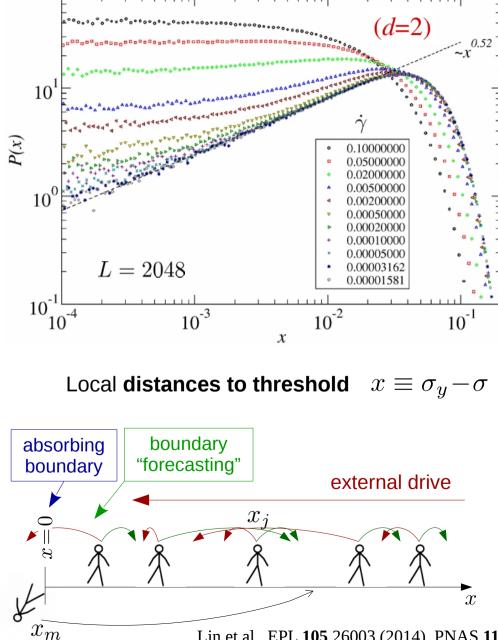


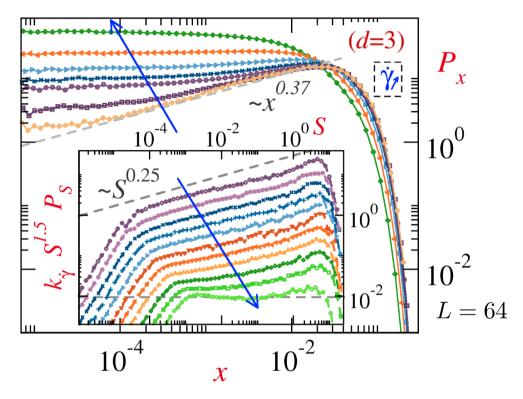
>  $\beta$  crosses over toward the Hébraud-Lequeux mean-field prediction when  $\dot{\gamma}$  increases.

$$\beta\simeq 1.54\to 2$$

- At large rates, noise distribution turns Gaussian
   → loss of non-trivial correlations
- > Variance grow slower than linear with  $\dot{\gamma}$ 
  - ightarrow drift dominates when  $\dot{\gamma}\gg 1$

Distribution of local distances to threshold (or "density of shear transformations")





We expect: "marginal stability" pseudo-gap (M. Wyart and co.)

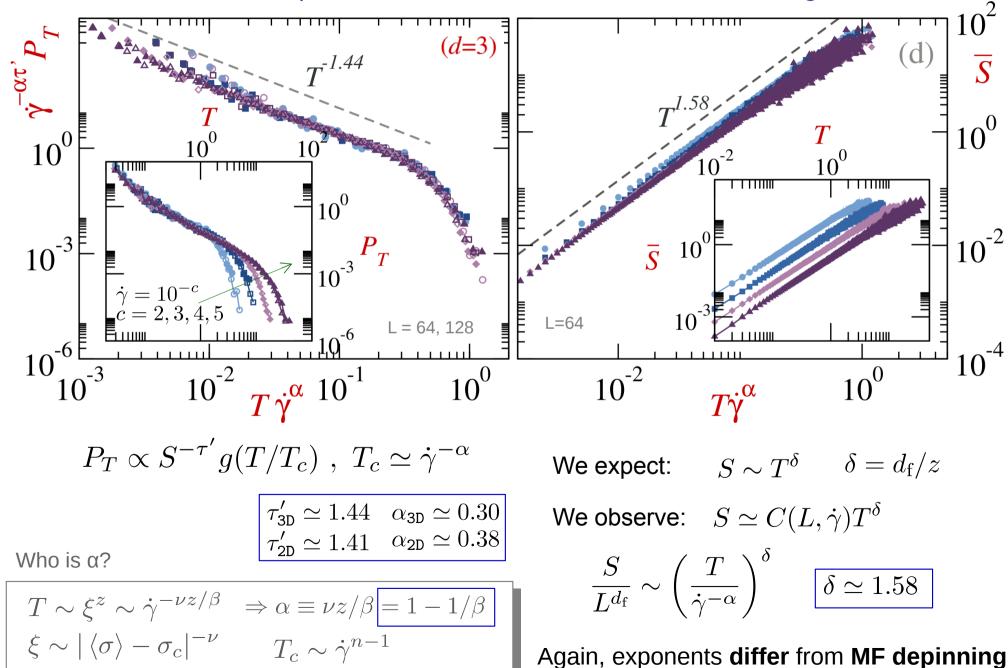
$$P_x \sim x^{\theta}$$
  $\theta > 0$   $\theta_{2D}^{qs} \simeq 0.57$   $\theta_{3D}^{qs} \simeq 0.35$ 

We observe:

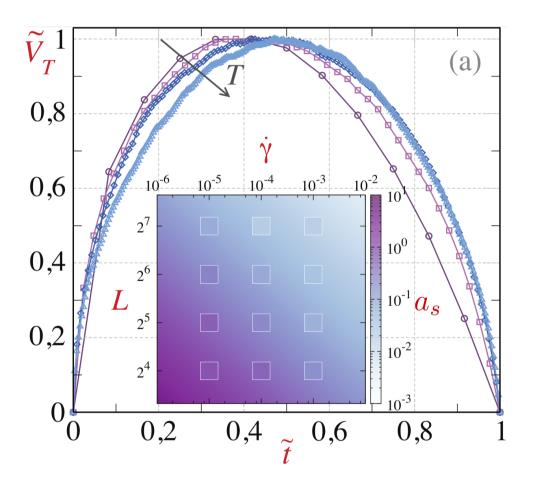
 $\begin{array}{ll} \mbox{At}~\dot{\gamma}\rightarrow 0 & \theta_{\rm 2D}\simeq 0.52 & \theta_{\rm 3D}\simeq 0.37 \\ \mbox{When}~\dot{\gamma}\gg 0 & \theta\rightarrow \theta^{\rm dep}=0 \end{array}$ 

Lin et al., EPL **105** 26003 (2014), PNAS **111** 14382 (2014), Müller & Wyart, Annu. Rev. Condens. Matter Phys. **6** 9 (2015)

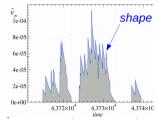
Stress drop duration distribution and size-duration scaling



Stress drop shapes (averaged at fix T)



**Recall**: 
$$\tilde{V}_{\sigma}(t) = \left[-\frac{d\langle\sigma\rangle(t)}{dt}\right]_{t_{\text{end}}}^{t_{\text{start}}}$$



Normalized shape for a drop of duration T:

$$\tilde{V}_T(t) = V_T(t) / \max_t (V_T(t))$$
  $\tilde{t} = t/T$ 

Fitting function\*:

$$\tilde{V}_T(\tilde{t}) \propto B(\tilde{t}(1-\tilde{t}))^c (1-a_s(\tilde{t}-0.5))$$

 $B \sim T^c$   $c = \delta - 1$  holds  $B \sim T^{0.6}$ 

*Inset:* "asymmetry" parameter

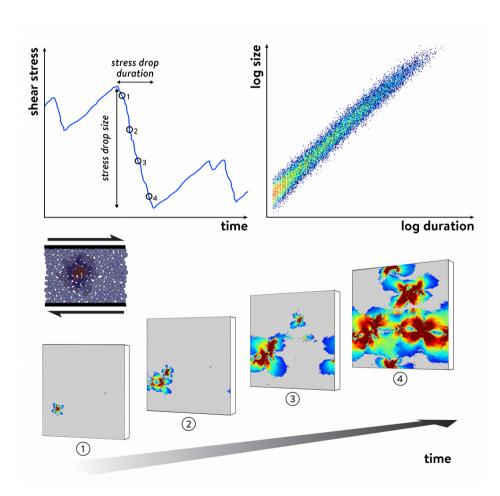
- Drops of short durations show a clearly asymmetric shape
- → For large T stress drops shapes become more symmetric.
- Superposition of "individual" avalanches due to finite strain-rate.

## Summary 1/2

- Our results reinforce the idea of a non-MFdepinning universality class for the yielding transition below d=4.
- Departing from the yielding point, at finite shear rates, the rise of many independent regions with yielding activity randomizes the response and draw exponents closer to MF expectations.
- The density of STZs crosses over from yielding marginal stability P(x)~x<sup>θ</sup> to depinning-like P(x)~cst. when increasing the external strain rate.
- Scaling relations hold within exponent's error bars

$$\beta = \nu (d - d_{\rm f} + z)$$
$$\nu = 1/(d - d_{\rm f})$$
$$\tau = 2 - \frac{\theta}{\theta + 1} \frac{d}{d_f}$$

#### C. Liu, EEF, F. Puosi, J.-L. Barrat, K. Martens Phys. Rev. Lett. **116** 065501 (2016)



### Finite Elements Method approach

To account for inertial effects

K. Karimi, EEF, J-L Barrat, PRE 95, 013003 (2017)

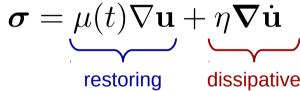
#### Irregular 2d lattice, tensorial model



$$\boldsymbol{\sigma}\ddot{\mathbf{u}}(\mathbf{r},t) = \boldsymbol{\nabla}.\boldsymbol{\sigma}(\mathbf{r},t)$$

 $\sigma$ : internal stress

 $\mathbf{u}(\mathbf{r},t)$  : displacement field





after elapsed  $au_{on}$ 

 $\Gamma = \frac{\tau_d^{-1}}{\tau_v^{-1}} = \frac{\eta/(\rho a^2)}{\sqrt{\mu/\rho a^2}}$  : dissipation coefficient

shear stress  $\sigma_s$  /(u/a<sup>2</sup>) Lower  $\eta$ , more inertial + EP rules:  $n: 0 \xleftarrow{\text{when } \sigma > \sigma_y} 1$ overdamped 0.5 1.0 underdamped 0.15 0.16 0.17 0.18 0.19 0.2 0,05 0 0,1 strain  $\epsilon$  $\mu(t) = \begin{cases} 0 & \text{while } n = 1\\ \mu & \text{otherwise} \end{cases}$ Molecular dynamics

Local yielding

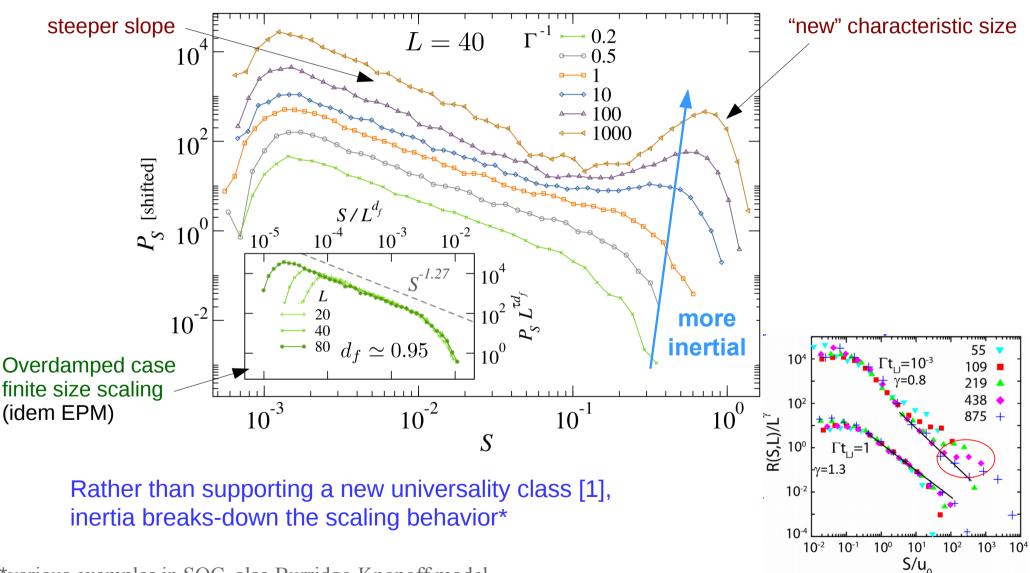
Elastic waves

K.M. Salerno & M. Robbins PRE 88, 062206 (2013)

⋆ X

Results Inertial avalanche size distributions  $S\equiv \langle \sigma 
angle \Delta \sigma L^d$ 

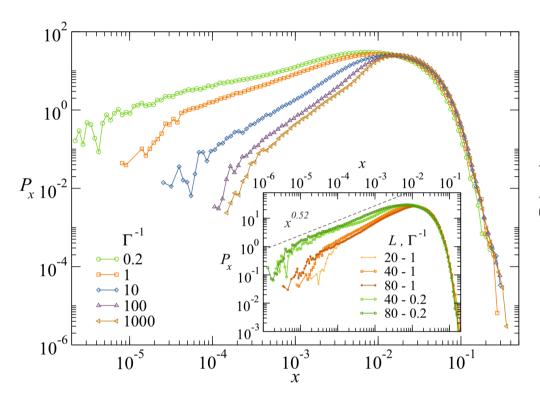
Varying damping



\*various examples in SOC, also Burridge-Knopoff model with weakening friction law (Carlson, Langer et al.)

[1] K.M. Salerno & M. Robbins PRE 88, 062206 (2013)

Distances to yielding and minimal distances to yielding distributions



Good **agreement** with EP models overdamped limit.  $\theta_{2d}\simeq 0.52$ 

### Increasing inertia we observe a steeper gap

The apparent bigger  $\theta$  as  $\Gamma^{-1}$  increases is a result of the presence of **two kind of events** 

 $au=2-rac{ heta}{ heta+1}rac{d}{d_f}\;\; {
m does}\; {
m not}\; {
m hold}\; {
m anymore}\;$ 

10  $x_{\min} = \min\{x_i\}$  $\int_{x}^{n} \int_{x}^{n} \int_{x$ 100 1000 3×10  $\Gamma^{-1}$ 1000 2×10  $10^{0}$ 1×10<sup>-3</sup> **→** 0 2  $10^{-5}$  $10^{-4}$  $10^{-3}$  $10^{-2}$ x<sub>min</sub>

> $P(x_{\min})$  displays a **bimodal distribution** for underdamped systems  $x_{\min} \leq x_{\min}^{cross}$

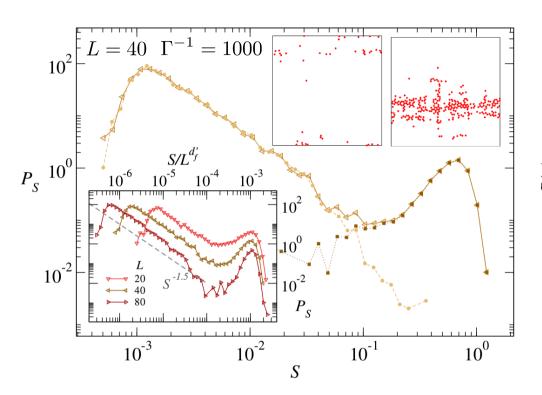
### Ansatz:

 $x_{\min}^{\text{cross}}$  separates two kind of avalanches:

- massive and inertial ("large"  $x_{\min}$ )
- localized and "overdamped-like" ("normal"  $x_{\min}$ )

26/29

Avalanche size and distances to yielding distributions splitting

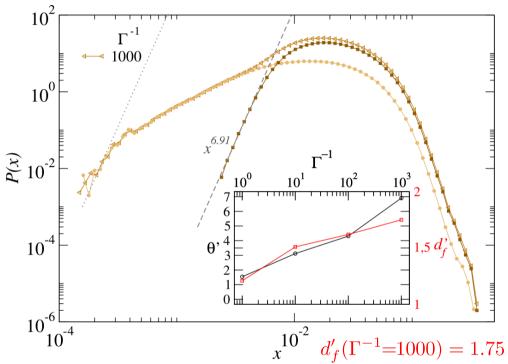


The splitting in two contributions is clear

### "Incipient" shear bands? This is quasistatic

Inertia associated with non-monotonicity in the flowcurve\*. Same mechanism present here.

\*A. Nicolas et al. PRL 116 058303 (2016) K. Karimi and J.-L. Barrat PRE 93 022904 (2016)



The **inertial peak** scales with  $L^{d'_f}$   $d'_f > d_f$ (consistent with MD\*\*)

New relation holds for the **exponents** related with the **inertial subset** 

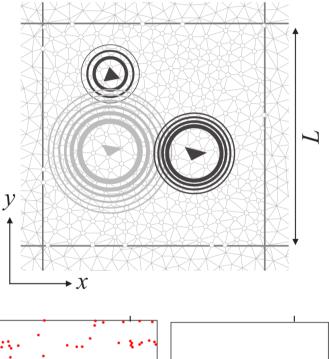
$$d'_f = d\left(1 - \frac{1}{1 + \theta'}\right)$$

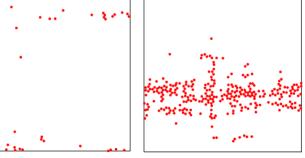
\*\*M. Robbins at KITP Avalanches 2014

## Summary 2/2

- Inertia breaks down the scale-free avalanche statistics and dominates the scaling of large avalanches, that show a larger fractal dimensions and reminiscence of shear bands
- A power-law distribution with damping dependent exponent is seen for smaller avalanches.
- We are able to **discriminate** "inertial" form "overdamped-like" avalanches based on the value of the minimum **distance to threshold** after them.
- In contrast to SOC-depinning models, *d<sub>f</sub>* being smaller than *d* in the overdamped limit of amorphous solids leaves a lot of "room" for the deployment of inertial avalanches when damping is decreased (the bump both grows and moves to the right).

## K. Karimi, EEF, J-L Barrat *Phys. Rev. E* **95**, 013003 (2017)





### **Financial support:**

"GLASSDEF" No. ADG20110209 Jean-Louis Barrat

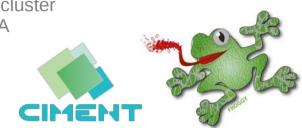


"SIZEFFECTS" No. ADG291002 Stefano Zapperi

#### **European Research Council**

### **Computing resources:**

Froggy hybrid cluster CIMENT - UGA



# Thanks !

www.ezequielferrero.com

References:

*Phys. Rev. Lett.* **116** 065501 (2016) *Phys. Rev. E* **95**, 013003 (2017)

