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Amorphous materials

very diverse systems... but they share common features
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Structurally disordered

Solid-like (elastic) behavior below yield stress

Flow under stress bigger than threshold



  

Yield stress systems

➢ flow curve: (shear) stress vs strain-rate in steady 
shear

➢ stress ‐strain curve: shear/tensile/compressive  
(uni/tri- axial) stres vs strain

E~100 Pa (Foam)E~100 GPa (BMG)

“soft” amorphous“hard” amorphous

Hookean solid: Yield stress material:

strain 
hardening

Newtonian fluid:

Yield stress material:
shear-band 
instability

Herschel-Bulkley law:

“Yielding transition”: a dynamical phase transition between an elastic solid-like state and a plastic 

flow state when we overcome a critical yield stress.
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Bulk metallic glasses [3]

Glassy polymers [4]

[3] J. Lu et al. Acta Materialia 51 3429 (2003)
[4] H.G.H. van Melick et al. Polymer 44  2493 (2003)

Polyelectrolyte gels [1]

[1] M. Cloitre et al. C. R. Physique 4 221 (2003)
[2] L. Bécu et al. Phys. Rev. Lett. 96 138302 (2006)

Emulsions [2]

log scale!

Yield stress systems



  

Phenomenology: 1. Local rearrangements

“jerky” aspect of the stress response

Silica colloids sheared at different shear-rates

C. Derec et al. Phys. Rev. E 67 61403 (2003)

Foam moved at fix rate, exerting force on a bead

I. Cantat and O. Pitois Phys. Fluids 18 083302 (2006)

well identified, localized “plastic events”

In foams: “T1 event” (4 bubbles)

“T1 event in a densely packed foam” by M. van Hecke, youtube (2014)
Princen and Kiss, J Coll. Int. Sci. 128 176 (1989)

A. Nicolas et. al EPJE 37 50 (2014), A.S. Argon and H.Y. Kuo Mat. Sci. Eng. 39 101 (1979)

In general: tens/hundreds of particles involved

“plastic event” = “plastic rearrangement” = “shear transformation”

https://www.youtube.com/watch?v=oUh0aasyYGo


  

Phenomenology: 2. Medium elastic response

J.D. Eshelby Proc. Roy. Soc. A 241 376 (1957)
Picard et al. EPJE 15 371 (2004)

A foam under shear strain

“Shearing a 2D foam” by M. van Hecke, youtube (2014)

MD simulations:

imposed shear transformation and average displacement field

F. Puosi, J. Rottler, J.-L. Barrat PRE 89 042302 (2014)

Continuum mechanics:

“Eshelby” propagator for the 
strain (stress) redistribution

elastic response to a 
deformed inclusion

Jensen et al, PRE 90, 042305 (2014)

correlations of local strain
(sheared colloidal glass)

Desmond and Weeks, PRL 115, 098302 (2015)

Experimental measurements:

average stress change around 
an event (2D emulsion)

Quadrupolar in symmetry,
dipolar in terms of interaction range

https://www.youtube.com/watch?v=UR2EcwM5e7I


  

Coarse-grained Elasto-Plastic Models (EPM) 

Fig. credit:
Bocquet et al. PRL 103, 036001 (2009)

+ Dynamical rules for a local “state variable” 

“mesoscopic” scale

Eshelby propagator

● Scalar
● Athermal
● Overdamped
● p.b.c.

Common simplifications:

Scalar stress field (e.g., shear component) in a grid, representing the stress in each block

external strain-rate local plastic yield “mechanical noise” due to plastic
activity elsewhere

A given plastic strain rate
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EPM: phenomenological and toy models
Bulatov-Argon (1994)

Baret-Roux-Vandembroucq (2002)
Picard et al. (2005)

Nicolas et al. (2014)
Ferrero et al. (2014)

Lin et al. (2014)

Chen-Bak-Obukhov (1991)
Homer-Schuh (2009)

Onuki (2003)
Jagla (2007)

Stress-strain and flowcurves

Flow and fluctuations in microchannels

Shear localization

Martens, Bocquet, Barrat, Soft Matter 8, 4197 (2012)

A. Nicolas and J.-L. Barrat, PRL 110, 138304 (2013)

Relaxation in yield-stress systems

EEF, K. Martens, J.-L. Barrat PRL 113, 248301 (2014)

Also... Talamali (2011), Martens (2012),  Budrikis 
(2015), Papanikolau (2016)



  

AVALANCHES



  

0) Avalanches in experiments, yielding transition and mean-field approaches.

1) Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition
Chen Liu, Ezequiel E. Ferrero, Francesco Puosi, Jean-Louis Barrat, Kirsten Martens
Phys. Rev. Lett. 116 065501 (2016)

2) Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids
Kamran Karimi, Ezequiel E. Ferrero, Jean-Louis Barrat
Phys. Rev. E 95, 013003 (2017)

Outline:

PSM group

Chen Francesco Kirsten Jean-Louis Kamran
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Avalanches: experiments

Bulk metallic glasses

J. Antonaglia et al. PRL 112 155501 (2014)J. Lauridsen et al. PRL 89 098303 (2002)

Foams Granular systems

D. Denisov et al. NatComm 7:10641 (2016), SciRep 7:43376 (2017) 

Plastic flow and stress drops

Is this scale freedom related to any kind 
of “critical” phenomena?
Shall we expect universality?



  

Dynamical phase transitions

Img. Credit: Lin et al., PNAS 111 14382 (2014)

EEF et al., Comp. Rend. Phys. (2013)

 depinning and yielding (similarities, but also, important differences) 

*e.g., J. Weiss et al. PNAS 111, 6231 (2014)
Dahmen et al.  PRL 102 175501 (2009)

Various depinning-analogy proposals* (long-range 
elastic interactions case)

Interface is rough and self-affine at threshold
Divergent length and avalanches:

depinning: yielding:

Divergent length scale and associated avalanche 
dynamics?

More than 30 years of research

D. Fisher Phys. Reports (1998)

Note: collective activity builds not-compact objects



  

Avalanches: mean-field approaches

Fully-connected network of N yield stress blocks

2) Block m reaches the threshold

1) We push blocks towards instability (increase stress)

“kicks” are positive and negativeAll “kicks” are positive (depinning case)

- the stress in m drops by a random amount ‘u’

- all other blocks receive stress “kicks”  

3) We repeat (2) while blocks yield, “avalanche size” is 

4) We resume from (1) 

(yielding case)

drive drive



  

E. Jagla PRE 92 042135 (2015)

Uniform loading

Avalanches: mean-field approaches (by simulation)

Depinning case

critical point:

independent on loading protocol

Random loading

Yielding case

Protocol dependent!!

The model which catches the “non-positive” nature of the Eshelby propagator yields an exponent different from 
depinning. Yet, random triggering restores a constant rate stochastic process for instability and τ=3/2.



  

Arbitrary overview of mean-field results

D.S. Fisher Ph.Rep. 301, 113 (1998), K.A. Dahmen 
et al.  PRL 102 175501 (2009), NPHYS 7 554 (2011)

Evolution equation for the probability distribution 
of  local (mesoscopic) stresses

Hébraud-Lequeux

P. Hébraud and F. Lequeux PRL 81 2934 (1998)
E. Agoritsas et al Eur. Phys. J. E 38, 71(2015)

Yielding

rate of plastic activity:

D.S. Fisher, K.A. Dahmen et al.

Depinning model for the displacements 
(plastic “slips”) in a solid

flow curve

Depinning

 avalanches size

local distances 
to threshold 
distributions

homogeneous positive interaction Yield stress system whenUnsigned feedback

(closer to experiments)

(numerical)

Lin-Wyart (based on Lemaitre-Caroli)

J. Lin and M. Wyart, PRX 6 011005 (2016)
A. Lemaitre and C. Caroli arXiv:0609689

Alternative to HL:

Power-law distributed unsigned kicks

P(x): “density of shear transformations”
How many incipient STZ are there?



  

Our EP model 

rules for local state variable 

Eshelby propagator
● Scalar
● Athermal
● Overdamped
● p.b.c.

Simplifications:

external
strain-rate

local plastic yield “mechanical noise” due to plastic activity

A. Nicolas, K. Martens, J-L Barrat EPL 107 44003 (2014)

Massively parallel
implementation on GPUs

new      chosen 
after yielding

Euler integration + pseudospectral method 
(intensive use of FFT)

C. Liu, EEF, F. Puosi, J-L Barrat, K Martens PRL 116 065501 (2016)
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Avalanches: Methods

C. Liu, EEF, F. Puosi, J-L Barrat, K Martens PRL 116 065501 (2016)

For different imposed strain rates... Observables:

size

For each event (stress-drop Δσ) we compute:

duration

shape

For several configurations in time

duration T

st
re

ss
 d

ro
p

local distances 
to threshold

shape
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Results
Stress drop size distribution at very low shear rates

Talamali et al. PRE 84 016115 (2011)

...for different system sizes, comparing with quasistatic MD simulations (grayscale triangles)

L
EP

=16,32,64,128

L
MD

=40,60,80

L
EP

=256,512,1024,2048

L
MD

=80,160,320

Salerno and Robbins PRE 88 060206 (2013)(EPM quasistatic)

scaling factor d
f
: “fractal dimension”. Slip-line avalanche geometry
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Size distributions and crossover to mean-field behavior

Results

➢ Crossover to“random triggering” (or 
depinning) mean-field exponent when 
we go away from the yielding point

(curves arbitrarily shifted by      )

➢ Large strain-rates “randomizes” the 
stress signal, by overlapping 
uncorrelated plastic activity. 

In this regime, many events may “fit” in     .        results from this superposition.

Be      the size of a “correlated event”, with           

cutoff is controlled by



  

Flow-curve and crossover to mean-field “randomized” behavior
Results

➢ Variance grow slower than linear with 
→ drift dominates when 

L=64

➢     crosses over toward the Hébraud-Lequeux 
mean-field prediction when     increases. 

“Mechanical noise”

The “yielding transition”

➢ At large rates, noise distribution turns Gaussian 
→ loss of non-trivial correlations
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Results

Lin et al., EPL 105 26003 (2014), PNAS 111 14382 (2014), Müller & Wyart,Annu. Rev. Condens. Matter Phys. 6 9 (2015)

Local distances to threshold

Distribution of local distances to threshold (or “density of shear transformations”)

“marginal stability” pseudo-gapWe expect:
 (M. Wyart and co.)

At

When

We observe:

absorbing 
boundary

external drive

boundary 
“forecasting”



  

Stress drop duration distribution and size–duration scaling

Results

We observe:

We expect:

L=64L = 64, 128

Who is α?

Again, exponents differ from MF depinning



  

Results
Stress drop shapes (averaged at fix T)

*L. Laurson et al. Nature Comm. 4 (2013)

➔ Drops of short durations show a clearly asymmetric shape

➔ For large T stress drops shapes become more symmetric.

Recall:

Normalized shape for a drop of duration T:

Fitting function*:

holds

Inset: “asymmetry” parameter

➔  Superposition of “individual” avalanches due to finite strain-rate.
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Summary 1/2

● Our results reinforce the idea of a non-MF-
depinning universality class for the 
yielding transition below d=4.

● Departing from the yielding point, at finite 
shear rates, the rise of many independent 
regions with yielding activity randomizes the 
response and draw exponents closer to MF 
expectations.

● The density of STZs crosses over from 
yielding marginal stability P(x)~xθ to 
depinning-like P(x)~cst. when increasing the 
external strain rate.

● Scaling relations hold within exponent’s 
error bars 

C. Liu, EEF, F. Puosi, J.-L. Barrat, K. Martens
Phys. Rev. Lett. 116 065501 (2016)

23/29 J. Lin, E. Lerner, A. Rosso, M. Wyart, PNAS 111 14382 (2014)



  

To account for inertial effects
Finite Elements Method approach

K. Karimi, EEF, J-L Barrat, PRE 95, 013003 (2017)

Continuum mechanics e.o.m.:

: displacement field
: internal stress

+ EP rules:

restoring dissipative

: dissipation coefficient

Local yielding 
+

Elastic waves

Irregular 2d lattice, tensorial model

Lower    , more inertial

overdamped
underdamped

K.M. Salerno & M. Robbins PRE 88, 062206 (2013)

Molecular dynamics



  

Inertial avalanche size distributions
Results

Overdamped case 
finite size scaling
(idem EPM)

“new” characteristic size

Varying damping

[1] K.M. Salerno & M. Robbins PRE 88, 062206 (2013)

steeper slope

Rather than supporting a new universality class [1], 
inertia breaks-down the scaling behavior*

*various examples in SOC, also Burridge-Knopoff model 
with weakening friction law (Carlson, Langer et al.)

more
inertial



  

Results
Distances to yielding and minimal distances to yielding distributions

Good agreement with EP models overdamped 
limit.

Increasing inertia we observe a steeper gap 

The apparent bigger     as         increases is a 
result of the presence of two kind of events

does not hold anymore

              displays a bimodal distribution 
for underdamped systems

separates two kind of avalanches: 

- massive and inertial  (“large”          ) 
- localized and “overdamped-like” 
(“normal”         )

Ansatz:
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Results
Avalanche size and distances to yielding distributions splitting 

The splitting in two contributions is clear The inertial peak scales with  
(consistent with MD**)

**M. Robbins at KITP Avalanches 2014

“Incipient” shear bands? This is quasistatic

*A. Nicolas et al. PRL 116 058303 (2016)
K. Karimi and J.-L. Barrat PRE 93 022904 (2016)

Inertia associated with non-monotonicity in the 
flowcurve*. Same mechanism present here.

New relation holds for the exponents related with 
the inertial subset 



  

Summary 2/2

● Inertia breaks down the scale-free avalanche 
statistics and dominates the scaling of large 
avalanches, that show a larger fractal 
dimensions and reminiscence of shear bands

● A power-law distribution with damping 
dependent exponent is seen for smaller 
avalanches.

● We are able to discriminate “inertial” form 
“overdamped-like” avalanches based on the value 
of the minimum distance to threshold after them.

● In contrast to SOC-depinning models, d
f
 being 

smaller than d in the overdamped limit of 
amorphous solids leaves a lot of “room” for the 
deployment of inertial avalanches when damping 
is decreased (the bump both grows and moves to 
the right).

K. Karimi, EEF, J-L Barrat
Phys. Rev. E 95, 013003 (2017)
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