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In the presence of impurities, ferromagnetic and ferroelectric domain walls slide only above a finite
external field. Close to this depinning threshold, they proceed by large and abrupt jumps called avalanches,
while, at much smaller fields, these interfaces creep by thermal activation. In this Letter, we develop a novel
numerical technique that captures the ultraslow creep regime over huge time scales. We point out the
existence of activated events that involve collective reorganizations similar to avalanches, but, at variance
with them, display correlated spatiotemporal patterns that resemble the complex sequence of aftershocks
observed after a large earthquake. Remarkably, we show that events assemble in independent clusters that
display at large scales the same statistics as critical depinning avalanches. We foresee these correlated
dynamics being experimentally accessible by magnetooptical imaging of ferromagnetic films.
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The physics of disordered elastic systems is relevant
for many areas of physics such as magnetic [1–5] and
ferroelectric [6,7] domain wall, contact lines in wetting [8],
crack propagation [9,10], and vortex lines in type-II
superconductors [11]. It involves the driven motion of
an elastic object, such as a manifold or a periodic structure,
in a weakly disordered medium. At zero temperature,
setting the system in motion requires the application of a
finite force f exceeding a critical value fc, a process known
as depinning. When f ≫ fc, and due to dissipation, the
system flows with a velocity essentially proportional to the
driving force f, while it is pinned for f < fc. At a finite
temperature, this behavior is drastically modified since
energy barriers can always be passed by thermal activation,
leading to a finite velocity for any finite force.
One of the important questions is the response of an elastic

interface to a very small force, f ≪ fc. Understanding this
regime is relevant to assess the electrical resistance of a
superconductor [11] or to judge in which conditions ferro-
electric or ferromagnetic materials can be used to store and
retrieve information [12]. It is now well known that at very
low driving, the response is highly nonlinear, leading to the
so-called creep regime. Phenomenological arguments based
on the Arrhenius activation of segments of the interface
(thermal nuclei) showed that, instead of a linear response, one
should expect a stretched exponential response [13–17],
where the average velocity of the wall is exponentially
small in a power law of the external force. This behavior
was later confirmed by more microscopic derivations based
on a functional renormalization group procedure (FRG) in
d ¼ 4 − ϵ dimensions [18,19]. Experiments onmagnetic and
ferroelectric domain walls also provided confirmation of the
creep law for the average velocity [1,6].

Despite these important successes between experiments
and FRG, two important questions remain open concerning
the creep motion. (i) First, a convincing confirmation of
the creep law is still missing. While experiments typically
concern systems in d ¼ 1 and d ¼ 2, the FRG is valid only
in d ¼ 4 − ϵ, with ϵ assumed to be small. The only
available theoretical tools to address the dynamics of
low dimensional interfaces, so far, are numerical simula-
tions. In this respect, traditional molecular dynamics
techniques have difficulties reaching the very long times
which are necessary to deal with the ultraslow motion
characterizing creep [17,20]. Thus, a well-controlled
numerical technique that would not suffer from slowing
down when the force is reduced would be highly suitable.
(ii) Second, and more importantly, the understanding of
creep dynamics besides its mean velocity is an open issue.
The FRG suggests that beyond the size of the thermal
nucleus, the coarse-grained motion should be depinning-
like up to a second temperature-controlled and very large
length scale where the flow regime occurs [18,19].
However, the evidence of such a large scale and the
description of this depinning-like motion are still elusive.
In this Letter, we provide a novel numerical technique

able to tackle the creep at very small forces and vanishing
temperature, computing the full sequence of activated
events. We determine the distribution of their sizes—which
displays an anomalous power-law behavior—and study
their surprising spatiotemporal organization: initial seeds
trigger large reorganizations of events (as shown in Fig. 1),
statistically identical at large scales to deterministic depin-
ning avalanches. In this way, our results give a clear
interpretation of the FRG predictions. Further, they link
the creep motion with the complex earthquake dynamics

PRL 118, 147208 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

0031-9007=17=118(14)=147208(6) 147208-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.147208
https://doi.org/10.1103/PhysRevLett.118.147208
https://doi.org/10.1103/PhysRevLett.118.147208
https://doi.org/10.1103/PhysRevLett.118.147208


[21], where a main shock triggers a cascade of aftershocks
[21–24]. We foresee these correlated dynamics being
experimentally accessible by events’ detection in ferro-
magnetic films [4]. To motivate such an experimental test,
we specify the relevant scales for the particular case of
Pt=Co=Pt films [25].
Phenomenology.—We consider a d¼1-dimensional in-

terface in absence of overhangs. At any time t, the local
displacement is described by a single valued function,
hðx; tÞ, which, in the overdamped limit, is described by the
so-called quenched Edwards-Wilkinson equation [26–28]:

γ∂thðx; tÞ ¼ c∇2hðx; tÞ þ f þ Fpðx; hÞ þ ηðx; tÞ; ð1Þ
where c∇2hðx; tÞ accounts for the elastic force due to the
surface tension, f is the external pulling force, and the
fluctuations induced by impurities and temperature are
encoded in the quenched disorder term Fpðx; hÞ and in the
Langevin thermal noise ηðx; tÞ, respectively. We consider
here random bond (RB) disorder in which the pinning
potential is short-range correlated in the direction of
motion. The analysis of the random-field disorder case,
where the pinning force is short-range correlated (and thus,
the energy displays correlations in the direction of motion),
is deferred to the Supplemental Material [29].
At zero temperature, there are two reference points

where self-affinity and scale-free behavior are expected.
Equilibrium scaling.—The first reference point, at f ¼ 0

corresponds to thermodynamic equilibrium where the
extensive ground state energy displays a critical sample
to sample fluctuations, growing as Lθeq , and the interface is
rough with a self-affine width growing as Lζeq . The
exponents θeq and ζeq are universal and depend only on
dimension, range of elastic interactions, and disorder class.

Depinning scaling.—The second critical point at f ¼ fc
and zero temperature corresponds to the depinning tran-
sition above which the interface acquires a finite global
velocity V ∼ ðf − fcÞβdep. This point is characterized by a
roughness ζdep (see Fig. 2 at f ¼ fc). At any force close to
fc, a small perturbation can induce a large reorganization of
the interface, called depinning avalanche. The avalanche
size, namely the area spanned by the moving interface, has
power-law statistics with exponent [37,38]

τdep ¼ 2 −
2

dþ ζdep
: ð2Þ

Creep scaling.—At small but finite temperature (T > 0)
and below fc, the instantaneous dynamics appears as a
collection of incoherent vibrations localized around deep
metastable configurations. However, the presence of a
small positive drive makes a global forward motion
energetically favorable in the long term. It was shown that
at vanishing temperature, this forward motion is effectively
dominated by the sequence of metastable states of decreas-
ing energy, separated by the minimal energy barrier
[39,40]. Scaling arguments suggest that at a very small
force (i.e., in the creep regime), the typical size for these
activated rearrangements is

LoptðfÞ ∼ 1=fνeq ; with νeq ¼
1

dþ ζeq − θeq
: ð3Þ

The global velocity is determined using the Arrhenius
formula, assuming that the energy barriers scale as the
ground state fluctuations, i.e., as Lθ

opt with θ ¼ θeq, result-
ing in the creep law [13–19]

− logV ∝ f−μ; ð4Þ
where μ ¼ νeqθeq ¼ θeq=ðdþ ζeq − θeqÞ.

FIG. 1. Spatiotemporal patterns. Top: snapshot of 300 consecu-
tive configurations for the moving interface. On the left, a typical
sequence of events at a small force in the creep regime that assemble
in space on a pattern of two clusters. On the right, a typical sequence
of deterministic avalanches at a larger force close to depinning that
appear randomly distributed in space. Bottom: activity maps
showing for each event of the top row, a horizontal line representing
its lateral extension. In all cases, the time sequence is illustrated by a
color code, from dark red (older) to dark blue (more recent).

FIG. 2. Velocity-force characteristics and reference points. Two
aspects of the T > 0 dynamics below fc are schematically shown:
(i) thevelocityV has a finitevalue at low forceswell approximatedby
Eq. (4), and (ii) a characteristic length scaleLopt, which diverges as f
goes to zero, separates two dynamical regimes identified by different
roughness exponents, ζeq below Lopt and ζdep above Lopt. When
f → fc, Lopt is identified with the microscopic Larkin length [16].
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In order to overcome the difficulties of the traditional
integration schemes for Eq. (1), it has been proposed to
target the rare events that move the interface forward
[39,40]. This corresponds to enumerate all pathways that
end in a state with lower energy and select the one that has
overcome the smallest barrier. Unfortunately, this exact
enumeration grows exponentially with Lopt and does not
permit to access the creep regime and to test the scaling
arguments of Eqs. (3) and (4).
Modeling.—Below fc, the dynamics that evolves the

interface from one metastable state to the next one is
composed by two steps: an activated move to jump a barrier
and find a lower energy state, followed by a deterministic
relaxation that further drives the interface through the energy
lowering gradient until the next minimum is reached. The
difference between the new and the previous metastable
configurations is a compact object that we call an event, well
characterized both by its area Seve and by its lateral size Leve.
In order to explore the low force regime, we adopt here a

new strategy for the activated move. Thanks to the Dijkstra
algorithm, we compute (in a polynomial time) the minimal
rearrangement in size that takes the interface to a lower energy
state. At small forces, this approximate method is equivalent
to searching for a minimal barrier since they grow with the
size of the rearrangement. This strategy allowsus toovercome
the severe computation limitations of the exact algorithm and
make it possible not only to increase by a factor 30 the system
size, but, and more importantly, to decrease by a factor 100,
the external drive f. Numerical checks show that even at
forces smaller and comparable to fc, the approximated
method provides the same macroscopic dynamics as the
exact algorithm. We refer the reader to the Supplemental
Material [29] for this validation and algorithmic details. For a
given realization of the disorder, the sequence of metastable
configurations generated by our algorithm is unique once the
steady state is reached. A typical sequence of locked
configurations can be seen in Fig. 1 (left). Unless specified,
all the reported numerical data correspond to a system
size L ¼ 3360.
Results analysis.—From the conventional picture of

creep dynamics, one would expect that for small driving
forces (f ≪ fc), the event size fluctuates around a “typical"

value L
dþζeq
opt (note that when f ≪ fc, the rearrangements

induced by relaxation are minimal). However, in Fig. 3, we
show that the event size distribution displays an unexpected
power-law scaling:

PðSeveÞ ∼ S−τeveGðSeve=ScÞ; ð5Þ
similar to the depinning one with a force-dependent cutoff
ScðfÞ. A good collapse of the distributions at different
forces is found for ScðfÞ ∼ f−α, with α ¼ 1.25. This scaling
with force is perfectly consistent with the cutoff being

Sc≃Sopt∼L
dþζeq
opt ; that for d ¼ 1 yields α ¼ ð1þ ζeqÞνeq ¼

5=4. We conclude that at variance with standard scaling, the

characteristic length Lopt corresponds to the “largest” rather
than the “typical” size of the irreversible events. However, the
creep law (4) is not affected, since, for activated dynamics, the
velocity is controlled by the largest barriers and therefore by
Lopt. Notice that for larger forces (f → f−c ), the activated
nucleus Lopt saturates to a microsopic length, but the event
size is dominated by the deterministic relaxation [40] so that
Leve diverges as ðfc − fÞ−νdep . Therefore, alsoSeve (defined as
combination of an activated and a deterministic move)
diverges at both critical points while taking a minimal value
at intermediate forces (see Supplemental Material [29]).
A second important feature of PðSeveÞ is the power-law

decay. A scaling argument, valid for elastic systems [41],
suggests that the cutoff exponent α and the power-law
exponent τ should satisfy the relation τ ¼ 2 − 2νeq=α ¼
2 − 2=ðdþ ζeqÞ, in analogy to Eq. (2). Here, the cutoff
∼f−α is controlled by the distance to equilibrium f ¼ 0,
and we would expect the value τ ¼ τeq ¼ 4=5. However,
this is not the case, and we find a larger exponent
τ ¼ 1.17� 0.01. Such a distribution with τ > τeq, violating
the scaling relation, expresses an excess of small events
compared to what is expected a priori for a distribution of
fully independent avalanches.
To shed light on this issue, we further inspect Fig. 1. We

observe that creep events are organized in compact spatio-
temporal patterns in contrast with depinning avalanches that
appear randomly distributed along the interface, as well
illustrated by the activity maps that supplement the sequence
of metastable configurations. Remarkably, there is a sim-
ilarity of such time correlations between events with the ones
observed in real earthquakes, where a large main shock is
followed by a cascade of aftershocks [21–24]. The statistics
of the energy dissipated by earthquakes is characterized by
the Gutenberg-Richter exponent b, which is equivalent to the
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FIG. 3. Events’ size distributions PðSeveÞ at different forces
(inset), collapsed by plotting PðSeveÞ=PðScÞ vs Seve=Sc, with
ScðfÞ ¼ f−νeqð1þζeqÞ (main panel), therefore validating the ex-

pected creep scaling Lopt ∼ f−νeq , given Sc ∼ L
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opt .
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exponent τ via the exact relation b ¼ 3
2
ðτ − 1Þ. For classic

avalanche models (e.g., depinning, directed percolation,
Abelian sandpiles), the maximal value for b is 3=4 (which
corresponds to the mean field exponent τ ¼ 3=2). From
the analysis of the seismic records, one gets [21,22]
b≃ 1 > 3=4. Thus, we observe that, due to the presence
of time correlation in the sequence of events, both earth-
quakes and creep events display an effective exponent τ
bigger than the one predicted by simple avalanche models.
In the interest of evaluating these spatiotemporal patterns,

we collect correlated events in clusters (creep events
enclosed by a circle in Fig. 1). In presence of short range
elasticity, a simple criterion for the cluster formation is to add
a new event to a growing cluster if their spatial overlap is not
null. The growth of a cluster stops whenever a new event has
no overlap with it. This event, in turn, represents the seed for
the creation of a new cluster. In finite systems, this procedure
can generate systemsized clusters, and in this case,wedecide
to artificially break the cluster construction and start with a
new cluster. This finite-size effect is mitigated here by
considering big enough systems, its analysis being the goal
of a separate work [42]. Upon identifying the sequence of
clusters, one can compute their size, namely the sum of the
areas of all the events that compose the cluster.
Figure 4 shows the cluster size distribution PðSclustÞ that

displays a crossover at a value Sclust ≃ Sopt. Below Sopt, we
observe a power lawwith exponent≈0.80� 0.06, consistent
with the equilibrium value, τeq ¼ 4

5
. Above Sopt, instead,

the power-law exponent ≈1.11� 0.04 is in good agreement
with the depinning critical avalanches distribution value
[38] τdep ∼ 1.11. In order to span more than eight decades
in Sclust=Sopt, we have simulated a range of forces
f ∈ f0.002; 0.2g. The equilibrium exponent appears in the
limit of small forces, while forces larger than f ≃ 0.05 only
display the depinning exponent τdep, with a lower cutoff
around Sopt. The upper cutoff of the distribution is controlled
by the system size and diverges in the thermodynamic limit.
The inset of Fig. 4 shows the structure factor SðqÞ SðqÞ ¼

hqh−q (here, hq is the Fourier transform of a metastable
configuration hðxÞ in the steady state, and the overline stands
for the average over many metastable configurations). The
figure clearly shows a crossover length scale 1=qc ∼ Lopt ∼
f−νeq that separates short scales (large q) displaying an
equilibrium roughness exponent ζeq ¼ 2=3 from large scales
(small q) displaying a depinning roughness ζdep ≈ 1.25, in
agreement with Refs. [43] and [44,45], respectively. This
geometrical crossover is compatible with the exponent
crossover in the clusters’ size distribution and supports
the idea of these objects being depinning-like above a scale
Lopt. The robustness of this conclusion is confirmed by the
study of the random field (RF) disorder case, which belongs
to a different universality class at equilibrium but shares the
same exponents as RB at the depinning transition [19,37,45]
(see Supplemental Material [29]).

Discussion.—Our newly developed algorithm allows us
to go deep in the creep regime of an elastic interface
moving in a disordered environment. It gives us an accurate
description of the forward irreversible motion in terms of a
sequence of well-defined activated events that goes far
beyond the FRG analysis. The most striking property
emerging from our study of creep events is their occurrence
in correlated spatiotemporal patterns, in sharp contrast with
depinning avalanches nucleating randomly along the line.
Despite the novel properties displayed by such dynamics,
we find that the creep law is verified by measuring below
f ¼ 0.1 a divergence compatible with Lopt ∼ f−νeq and
therefore, with Eq. (4).
We have constructed collective avalanches or “clusters”

of creep events. We identify their sequence with the
depinning-like motion predicted by the FRG analysis
[19] at intermediate scales above Lopt and below a temper-
ature-dependent length (denominated Lav), which diverges
for T → 0. Because of the imposed limit of vanishing
temperature in our study, the cluster statistics are scale free;
otherwise, we would expect a cutoff related to Lav.
Remarkably, we find out that the dynamics inside the
cluster is activated, as creep events are required to over-
come energy barriers, and not simply a deterministic
gradient-descent motion. Not being fully anticipated by
FRG, our picture opens a door for future theoretical studies.
We believe that the clustering behavior of creep events can

be observed in experiments with the current magnetooptical
techniques able to directly visualize the interface motion.
In fact, monitoring ion-irradiated magnetic thin films,

10
-2

10
0

10
2

10
4

10
6

S
clust

/ f 
-ν

eq
(1+ζ

eq
)

10
-8

10
-6

10
-4

10
-2

10
0

P
(S

cl
us

t)
 f 

-τ
de

pν eq
(1

+ζ
eq

)

0.2
0.08
0.05
0.02
0.008
0.005
0.002

10
-2

10
-1

10
0

10
1

10
2

q f
-ν

eq

10
-3

10
0

10
3

10
6

S(
q)

/S
(f

ν eq
) ~S

-τ
dep

~S
-τ

eq force

~q
-(1+2ζ

dep
)

~q
-(1+2ζ

eq
)

FIG. 4. Cluster area distribution PðSclustÞ for different forces

f ∈ f0.002; 0.2g. A characteristic size Sopt ∼ Sc ≃ L
ð1þζeqÞ
opt , with

Lopt ∼ f−νeq , separates small clusters that follow equilibriumlike
statistics from big clusters that follow a depinning-like one
(shaded range). Inset: rescaled structure factor SðqÞ for the same
forces. SðqÞ=SðqcÞ is a function of q=qc, with qc ∼ 1=Lopt ∼ fνeq ,
denoting a geometrical crossover from an equilibriumlike rough-
ness at small scales to a depinning-like roughness at large scales.
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Repain et al. [4] were able to observe small correlated events
in the creep regime, their characteristic size increasing when
lowering the external field, in good qualitative agreement
with our predictions. Furthermore, we can quantitatively
anticipate the observation of spatially resolved individual
creep events on Ptð0.35 nmÞ=Coð0.45 nmÞ=Ptð0.35 nmÞ
films [25] at room temperature for domain wall velocities
of order 1 nm=s (see Supplemental Material [29]). We
expect not only direct visualizations but also noise mea-
surements [46–48] to allow for a full quantitative test of our
predictions on creep dynamics.
Despite the experimental interest, there are few theoretical

studies on avalanches’ dynamics at finite temperature. One
should mention the Bak-Sneppen model of biological
evolution, where the successful mutations are activated over
finite barriers [49] and induce scale free patterns of spatially
correlated mutations similar to our clusters.
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