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In this supplement we describe in details our model and validate it. We confirm that creep
motion is described by both depinning and equilibrium exponents by inspecting the Random Field
disorder case in comparison with the Random Bond used along the main text. Finally, we provide
quantitative estimates of the relevant scales for the experimental test of our results in Pt/Co/Pt
thin ferromagnetic films.

FIG. S1. The 2-step creep algorithm – On the left, a schematic
representation of the interface moving from a blocked config-
uration α to a new one γ, passing trough the intermediate
unstable configuration β. An activated nucleus of size Lopt

takes the system from α to β. From there, a sequence of de-
terministic VMC relaxation updates follows, represented by
dashed lines, leaving the system in a new metastable state
that differs from the previous one in a portion Leve. On the
right, a simplified energy-path draw that illustrates this ac-
tion.

MODEL DETAILS

The interface is modeled as a discrete polymer of L
monomers at integer positions h(i) (i = 0, . . . , L − 1).
The string energy is given by:

E =
∑
i

[
(h(i+ 1)− h(i))2 − fh(i) + V (i, h(i))

]
. (S1)

We consider periodic boundary conditions in the lon-
gitudinal direction (h(L) ≡ h(0)), and implement a hard
metric constraint (|h(i) − h(i − 1)| ≤ 1) which signif-
icantly reduces the configuration space [1]. The dis-
order V (h(i), i) is computed from uncorrelated Gaus-
sian numbers Rj,i with zero mean and unit variance.
To model RB disorder we defined VRB(h, i) = Rh,i,

such that V (j, i)V (j′, i′) = δi,i′δj,j′ while for RF dis-

order we define VRF (h, i) =
∑h
k=0Rk,i, such that

[VRF (j, i)− VRF (j′, i′)]2 = δi,i′ |j − j′|.
The two-steps polymer position update, illustrated in

Fig. S1, is performed as follows:
(i) Activation: Starting from any metastable state we

find the smallest compact rearrangement that decreases

the energy. In order to do that, we fix a window w and
compute the optimal path between two generic points
i, i + w of the polymer using the Dijktra’s algorithm
adapted to compute the minimal energy polymer between
two fixed points [2] (we do it for all i). The minimal favor-
able rearrangement corresponds to the minimal window,
w, for which the best path differs from the polymer con-
figuration. In practice, the window w is increased from
w = 2 up to the minimal wmin needed to decrease the en-
ergy of the polymer. If in correspondence with wmin mul-
tiple possible rearrangements are found (namely multiple
choice of the starting point i), we select the one which
triggers the polymer to the smallest energy. Within this
approach, as discussed in the main article, we assume
that the minimal energy barrier identifies with the small-
est compact movement that decreases the energy.

(ii) Deterministic relaxation: After the above ac-
tivated move, the string is not necessarily in a new
metastable state. So, we let the line relax deterministi-
cally with a protocol of elementary moves [3] also known
as Variant Monte Carlo (VMC) [4], which allows for the
motion of m + 1 adjacent sites by one lattice spacing if
no move of m sites is energetically favorable.

We are interested in a steady state behavior. One
could define the onset of a stationary state as the con-
figuration in which two different initial conditions start
to visit exactly the same sequence of metastable states.
We have explicitly checked, stating from different flat
initial states, that this is established after each point of
the line has advanced forward at least a small portion of
its length, and we use that as a criterion to discard the
transient.

The approximation introduced in the activated step
allowed us to overcome the severe computation limita-
tions of the exact algorithm and made it possible not
only to increase by a factor 30 the system size, but, and
more importantly, to decrease by a factor 100 the exter-
nal drive f , unveiling the statistics and the clustering of
the activated events. Indeed, as discussed in [2, 5], the
computational cost of the activated step grows exponen-
tially in Lopt(f) with the exact algorithm while, within
our approximation, it has a polynomial cost. Of course,
there is a price to pay: We lose access to the actual en-
ergy barrier values and therefore to the real time. On
top of the algorithmic improvement, the ensemble of our
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FIG. S2. Left: Average structure factors in the steady-state creep motion at f = 0.8. We compare the structure factor
obtained with the approximate algorithm for L = 192, with the ones obtained with the exact algorithm for L = 120, 240. Right:
Comparison of the creep event size distribution obtained with the exact and approximate algorithms for a driving force f = 0.8.
The power law P (Seve) ∼ S−1.15

eve is shown as a guide to the eye.

code is implemented to run in parallel in general-purpose
Graphics Processing Units, what gives an extra speedup
to the simulations. Source files are freely available under
request.

In order to validate our approximation, we contrast
its results directly with the ones obtained by the exact
transition pathways algorithm used in Refs. [2, 5]. In
Fig.S2-left and S2-right we compare, respectively, the av-
erage structure factor and the event size distribution at
a given force. A statistical difference can only be ap-
preciated for small events (small length scales and large
wave-vectors q), presumably because of disregarding the
existence of large energy barriers for some of the small
rearrangements. In general the equivalence between the
scaling of rearrangement sizes and energy barriers seems
to work very well all across the range of parameters where
it is possible to simulate both algorithms. Most impor-
tantly, differences at large scales, the ones that dominate
the universal behavior we aim to study, are unobservable.

RANDOM BOND AND RANDOM FIELD
DISORDER

Being an intermediate regime between two fixed points
of the dynamics [6], the creep is thus described by both
equilibrium and depinning exponents, rather than by dif-
ferent ones.

In Table S1 we report the equilibrium and depinning
exponents [2, 5, 7–12] for RB and RF. It is worth re-
marking that RB and RF share the same depinning uni-
versality class while at equilibrium they display different

1d RB exponents estimate

ζeq 2/3

νeq = 1/(2− ζeq) 3/4

τeq = 2− 2/(1 + ζeq) 4/5

θeq = 2ζeq − 1 1/3

µ = θeqνeq 1/4

1d RF exponents estimate

ζRF
eq 1

νRF
eq = 1/(2− ζRF

eq ) 1

τRF
eq = 2− 2/(1 + ζRF

eq ) 1

θRFeq = 2ζRF
eq − 1 1

µRF = θRFeq νRF
eq 1

1d RB & RF exponents estimate

ζdep 1.250

νdep = 1/(2− ζdep) 1.333

τdep = 2− 2/(1 + ζdep) 1.11

TABLE S1. Universal exponents relevant for the one dimen-
sional creep motion, for short range elastic interactions, ac-
cording to the disorder type.

exponents.
The fact that RB and RF disorders have the same de-

pinning but different equilibrium exponents has visible
consequences in the creep event size distributions. In
fact, as can be seen in Fig. S4-left, and comparing with
Fig. 3, individual events decays faster for RF than for RB
disorder. On the other hand in Fig. S4-right we show that
the distribution of cluster sizes decays, for large sizes, as
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FIG. S3. Cutoff of the distribution of the areas of creep events
for RB and RF disorders. In each case the mean value of
fourth order 〈X〉n=4 =

〈
X4

〉
/
〈
X3

〉
is shown. The error bars

are estimated from the difference with the values given by
〈X〉n=3. Dashed lines show the universal power-law diver-
gence expected as f → 0 from the phenomenological creep
theory, being the Lopt ∼ f−νeq law verified for forces f < 0.1.

Note that Seve ≈ Sact ∼ Sopt = L1+ζ
opt at low forces, while at

higher values Seve � Sopt due to large deterministic relax-
ation. In particular one observes Sact ∼ Sopt →∞ for f → 0
and Seve → ∞ for f → f−

c . Data correspond to simulations
of a system size L = 3360.

a power law with an exponent τdep ≈ 2− 2/(1 + ζdep) ≈
1.11, in accordance with Fig. 4 and the fact that depin-
ning exponents are identical for RB and RF. For sizes
smaller that Sopt however, the RF cluster distribution
in Fig. S4-right is better described by a power law de-
cay with exponent τRF

eq ≈ 2 − 2/(1 + ζRF
eq ) ≈ 1, which

is visually distinguishable from the exponent τeq ≈ 4/5
of the RB case in Fig.4. As for the case of RB disorder,
the structure factor S(q) also accompanies this length
crossover, showing a geometrical change at wave-vector
qc ' 1/Lopt(f), as displayed in the inset of Fig. S4-right.

But notice now that Lopt(f) ∼ f−ν
RF
eq , with a different

exponent. Consistently, the geometrical crossover is now
from the unique depinning roughness ζdep at large scales,
to the RF equilibrium roughness ζRF

eq at small ones.

The good collapse of the curves in Fig. S4-left under

the rescaling Seve/f
−νRF

eq (1+ζRF
eq ) shows that f−ν

RF
eq (1+ζRF

eq )

controls the cutoff of the distribution, as it was shown for
the RB case in the article. Another way to systematically
access the cutoff Sc of a distribution of the form (5) is
to look at the higher moments Sc ≈ Sn ≡ 〈Sn〉/〈Sn−1〉
with n > τ .

In Fig. S3 we show this ratio for n = 4 both for RB
and RF. Further, for each type of disorder we show the
value obtained considering only the activated part Sact

of the event (recall the algorithm description above) and

the total area of the event Seve (which is the activated
plus the deterministic part). As can be seen comparing
with the dashed lines representing Sopt ∼ f−νeq(1+ζeq)

(compatible with the celebrated Lopt ∼ f−νeq), at small
forces one recovers the creep scaling for the high order
moment (equivalently, for the cutoff of the distribution)
Sn ∼ f−νeq(1+ζeq), be it RB or RF. At large forces, Sact

and the total area Seve are significantly different due to
the divergence of the deterministic relaxation after acti-
vation as we approach fc, estimated to be fc ≈ 1.1 for RB
and fc ≈ 0.9 for RF in the natural units of our problem.

In fact, Seve is defined as a combination of an acti-
vated move of size Sact, which diverges for f → 0, plus
a deterministic relaxation diverging at f → fc. There-
fore, Seve diverges at both critical points while taking a
minimal value at intermediate forces. This, translated
to Leve, accompanies the non-monotonic behavior of the
MSD discussed before.

In summary, the observations made in this section fur-
ther confirm that creep motion is generically described
by both equilibrium and depinning exponents regardless
of the RB or RF nature of the disorder.

QUANTITATIVE ESTIMATIONS FOR THE
CASE OF Pt/Co/Pt THIN FILMS

We believe that the clustering of creep events can
be observed in experiments with the current appara-
tus and magneto-optical techniques which are able to
directly visualize the interface motion. Indeed, us-
ing this technique, Repain et al. [13] already ob-
served, in a He-ion–irradiated Pt/Co(0.5 nm)/Pt ultra-
thin film, small correlated events in the creep regime
whose characteristic size increased with lowering the
field, in good qualitative agreenment with our pre-
dictions. More Recently, Gorchon et al. [14] stud-
ied field-driven one dimensional domain walls in ul-
trathin Pt(0.35nm)/Co(0.45nm)/Pt(0.35nm) magnetic
films with perpendicular anisotropy, using magneto-
optical Kerr microscopy. By fitting the velocity force
characteristics in the creep and depinning regimes, they
determined a critical depinning field H

dep
≈ 1000 Oe and

a characteristic energy scale kBTdep ≈ 2000 K at room
temperature (T = 300 K). With these values it is pos-
sible to evaluate the linear size of the event cut-off, Lopt

and the associated displacement, hopt, using the standard
assumptions of weak pinning [15–17]:

Lopt = Lc(Hdep/H)νeq ≈ 40nm(Hdep/H)0.75, (S2)

hopt = wc(Lopt/Lc)
ζeq ≈ 20nm(Hdep/H)0.5. (S3)

Here we used the known values for the 1d νeq and
ζeq, from Table S1. The microscopic length Lc, named
Larkin length, can be evaluated [15, 16] as Lc =
(kBTdep)/[(MsHdepδ)wc] ≈ 40 nm, where wc ≈ 20 nm
is of the order of the domain wall width, δ ≈ 0.45 nm
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FIG. S4. Event and cluster size distributions for the Random Field disorder case – On the left: Distribution of creep events
in presence of RF disorder for different forces. The inset shows the P (Seve) as a function of Seve while the main panel shows

the collapse obtained using the rescaled variables P (Seve)/P (f−νRF
eq (1+ζRF

eq )) and Seve/f
−νRF

eq (1+ζRF
eq ). The collapse confirms the

creep scaling for the cutoff Sc ∼ L
1+ζRF

eq
opt ∼ f−νRF

eq (1+ζRF
eq ). On the right: Cluster size distribution for RF disorder and different

forces. As in the RB case a crossover from equilibrium to depinning is observed when we scale Sclust with Sopt ' f−νRF
eq (1+ζRF

eq ).
Notice that both the scaling size Sopt and the exponent of the equilibrium power-law regime (τRFeq = 1) have changed respect
to the ones of the RB case and still the scaling holds. Data correspond to a system of size L = 3360.

is the thickness of the sample and Ms ≈ 800 erg/G.cm3

the saturation magnetization. Interestingly this implies
that the two dimensional shape of creep events become
increasingly compressed in the direction of motion as
we reduce H, the aspect ratio scaling as Lopt/hopt ≈
2(Hdep/H)0.25 (very thin and elongated avalanches). On
the other hand, the area distribution cut-off of these
events is predicted to scale as

Sopt = wcLc(Lopt/Lc)
ζeq+1 ≈ 800 nm2(Hdep/H)1.25

(S4)
For a given field, detecting individual creep events of
such sizes is mainly limited by the spatial resolution
of the imaging technique. Using a spatial resolution of
1 µm, which is typical for magneto-optical setups, plug-
ging in the measured Hdep ≈ 1000 Oe and asking for
Lopt, hopt > 1 µm, we get the condition H . 0.4 Oe at
room temperature. For such fields, Sopt = hopt × Lopt .
40 µm × 1 µm = 40 µm2 and the average domain wall
velocity drops below 1nm/s, as is found by extrapolat-
ing from the creep law. At such small velocities, which
are in principle still measurable (e.g. vmin = 0.1 nm/s
in [18]), the “granularity” of creep events should become
observable, opening the possibility to test our predictions
of spatio-temporal correlations and non-trivial distribu-
tions for them.

It is worth mentioning that Lopt was also estimated in-
dependently in Ta(5.0-nm)/Pt(2.5-nm)/Co90Fe10 (0.3-

nm)/Pt(1.0-nm) film wires with perpendicular magnetic
anisotropy [19], with a completely different method.
Once more, Lopt was shown to scale as predicted for the
RB 1d model with short-range elasticity Lopt ∼ H−0.75.
This was achieved by observing the onset of finite effects
in the velocity force characteristics at the creep regime,
as the wire width w was physically reduced down to
w ∼ Lopt(H) and below. For these samples a field of
H = 16 Oe gives Lopt ≈ 0.16 µm, remarkably in good
agreement with the above estimate for the Pt/Co/Pt
film. Interestingly enough, our results imply that at low
fields, such that Lopt > w, the velocity is controlled by a
power law distribution of thermally activated events with
a size cut-off w. This is consistent with the results re-
ported in [19] showing the scaling of the velocity with w
in place of Lopt. Moreover, our findings also predict that
the so-called “zero dimensional” regime in [19] has actu-
ally contributions from power-law distributed correlated
events with a size smaller than w.

MOVIE

Accompanying this manuscript we provide a movie
illustrating the spatio-temporal patterns in ultra slow
creep dynamics as obtained directly from our simulations
for a small L = 512 system. The movie displays the se-
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quence of creep events in space and the corresponding
activity maps comparing with depinning avalanches.
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