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We describe in detail the model used in the manuscript and explain our numerical implementation
set to run in parallel on GPUs. We provide also some details about the post-processing and analysis

of the raw simulation results.

THE MESOPLASTIC MODEL

We study the scalar elasto-plastic model in two (2d)
and three dimensions (3d) under the presence of an im-
posed shear-rate, following the modifications proposed
by Nicolas et al. [1] to the model of Picard and co-
workers [2, 3].

An amorphous system is represented by a coarse-
grained scalar field o(7,t), denoting the instantaneous
deviatoric shear stress of the system at spatial position
r and time ¢ upon the application of a simple shear. An
over-damped dynamics is imposed for this scalar quan-
tity following some basic rules: (i) The stress loads lo-
cally in an elastic manner while it is below a certain yield
stress oy(r). (ii) When the local stress overcomes the
local yield stress, a plastic event occurs. Dissipation oc-
curs locally, expressed as a progressive drop of the local
stress, together with a redistribution of the stresses in
the rest of the system, provided by a long-range elas-
tic perturbation. This process stops when a criterion for
the accumulated local strain is met, the region recovers
its elastic properties and a new local yield threshold is
chosen from a given distribution.

The shear stress perturbation caused on the system is
computed within the framework of tensorial linear elas-
ticity assuming an isotropic incompressible material [2].
A Green’s function G(r,r’) relates the stress variation
do at each point in space with the corresponding com-
ponent of the plastic strain vP!(r’;t) associated with a
plastic event occurring at ’. The perturbation given by
the elastic propagator G(r,r’) can be approximated by
the far field expression [2, 3] of the continuum mechanics
solution [4]

So(r,t) = i / ' Glr, 7 )P (1) (1)

where p is the shear modulus. This kernel decays with
the distance as 1/r? (r = |r — 7'|) and changes sign ac-
cording to the angle sustained between the shear direc-
tion and the interaction vector 6 = arccos((r—7r")-r; @ ),
with a particular quadrupolar symmetry. For example,
in 2d we have G(r,r’) = G(r,0) ~ —t;cos(46) in polar

coordinates. The self interaction Gy = G(r,r) is chosen
to be a negative constant that rules the local dissipation
rate.

Dynamics at zero temperature

We can define the model as a d-dimensional scalar field
o(r), r = (x1,x2,...,24) subjected to the following evo-
lution in real space
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where we have imposed a global elastic loading 4(°**) on
top of the perturbation induced by plastic events.

The picture is completed by a dynamical law for the
plastic strain v?!. Following [3], we use a law relating the
plastic strain velocity of a region undergoing a plastic
deformation to the instantaneous local stress.
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Here 7 is just a mechanical relaxation time that fixes
the time units, n(r) is a local “state variable” which takes
values n = {0,1} indicating whereas the system at posi-
tion 7 is plastically active (n = 1) or not (n = 0).

The concept of “active” and “inactive” regions is inti-
mately related to the discretization of space. Let us say
for the moment that different “patches” of the system
hold at each time a single value of n(r), that is modified
according to the following local rules:

n(r, 1) : 0—1 if o> 0y
"0+ 1 when [dt'|0o(t)/p+ AP > e
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Model parameters

As in Ref [1] we choose randomly from a distribution
the local yield thresholds o,. More precisely, we imagine
a potential energy landscape (PEL) with energy barriers
E, = 03 /4p. This landscape is composed of metabasins
of exponentially distributed depths E,. Small jumps be-
tween PEL basins are neglected and only larger jumps
corresponding to the irreversible rearrangements at low
enough temperature are considered. In other words, a
lower cutoff EI*® = ;y2/4 is introduced in the energy
barrier distribution

P(E,) = O(E, — EM®)\e ME =), (6)

The parameters A and 7. determine the average yield
strain (vy,). We have choose here v, = 0.035 and A = 700
such that (y,) ~ 7,7%, which is a realistic value. The
distance (in terms of strain) among metabasins minima
can be expressed in units of the strain 7. used to define
the cutoff Ezin. For simplicity, this distance is choosen to
be equal to 7.. Therefore, once it yields, a block will re-
main plastic until it has accumulated a total strain equal
or greater than ~..

The time and stress units, 7 and p are chosen to be
the unity without loose of generality.

NUMERICAL APPROACH

Our system is described by a 3d (or else 2d) scalar
field o(r), and a state variable n(r) for each block of a
spatially discretized space. This is, each spatial block of
volume vy = dxdydz, centered at position r = {z,y, 2z}
is represented by a single value of the scalar fields in the
nodes of a cubic lattice {x £ dx/2,y +dy/2, 2+ 5z/2} —
(1,5, k)

In practice, we have a L, x L, x L, array of real vari-
ables 0;;, representing the local stresses and a boolean
array n;;, with identical dimensions holding the binary
state of the blocks. Further, we discretize also the time ¢
in Eq.2, choosing a small discrete time step dt < 1 that
we keep constant during all the simulation process.

In order to simulate the equation of motion (2) for the
local stresses, beforehand we choose a mechanically stable
initial configuration o;;,(t = 0). Such a configuration
has to ensure that the sum of all stresses in each column
or row of the cubic box should be equal. Typically we
choose ;5 = 0 for all {4, j, k}, and consistently, all state
variables to be initially on the “inactive” state n;;, = 0.

Once we have an initial configuration at hand, we
evolve Eq.2 with a simple Euler integration method.
We avoid any kind of numerical integration problems by
choosing an integration time step dt small enough. We
have used in this work dt = 1072 and 1073, which are

sufficient to avoid integration problems. Notice neverthe-
less, that certain minor details of the resulting curves can
depend on dt, as for example the lower cutoff of Pg and
Pr. This effect of a finite integration step is more promi-
nent at large driving rates as can be seen in Fig.2b-inset
of the manuscript.
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After each integration step for o;;, we update the state
variables n;;, according to the rules defined in Eq.5. In
there, n changes from 0 to 1 as soon as the local stress
overcomes the local threshold. If so, an auxiliary variable
is set to accumulate (from zero) the local strain during its
evolution. When the accumulated total strain reaches a
given value 7. the active phase stops, and n goes back to
0. The dynamics goes on, updating consistently o;;; and
N;jk, until a stop criterion is matched (total simulation
time, total strain deformation, etc.).

Boundary conditions and spectral method for the
dynamics

Numerical simulations are done in finite size systems.
Contrary to fully-connected models, in this case space is
defined and we are forced to define boundary conditions.
Since we are interested in bulk quantities, we can choose
periodic boundary conditions (p.b.c.) in all directions
without loose of generality. In problems where the anal-
ysis of wall effects on the system rheology is particularly
relevant, the numerical approach is different from the one
we present here (see for example [2, 5]). The choice of
p-b.c. will also simplify the numerical implementation.
In particular, it allows for the use of a technique called
pseudo-spectral method, that we describe in the follow-
ing.

The second term on the RHS of Eq.2 is an integral
over all space, since the kernel G(r,r’) is long-range. If
we Fourier transform with respect to the variable 7/, the
integral over space is simplified to independent products
for each Fourier mode q

Gqn(q)a(q)
(8)

This transforms a non-local, time-consuming, sum over
spatial coordinates into a local operation in the Fourier
modes that can be trivially performed in a parallel
scheme. Therefore we can evolve the local stresses in
Fourier space according to the transformed equation of
motion
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Of course, since after each update of o(r) we need to
update also n(r), it is necessary to transform stresses
back to real space. So the process includes two Fourier
transforms (one forward and one backward) at each time-
step of the dynamics. Nevertheless, with this technique
we reduce the computing time for the convolution (Eq.8)
from O(N?) to O(N log(N)). In addition, this operation
is highly optimized in standard libraries (e.g., FFTW3,
cuFFT) that make the method even more suitable for a
parallel implementation.

PARALLEL IMPLEMENTATION ON GPU

In the last years the use of GPUs to accelerate simula-
tions has burst out in many areas of physics and science
in general.

Following previous GPU implementations from some
of us [67 , 7], we have implemented a GPU-based
parallel implementation of the elasto-plastic model de-
scribed above. Our codes are written in C++ and C for
CUDA [8]. For this project we had worked with NVIDIA
GPUs. The CUDA programming framework makes it
simpler the access to many low level directives, preserv-
ing a more compact and easy to read code[9]. Simula-
tions were ran on Kepler architecture (GK208) GPUs,
the Tesla K20.

Update routine, CUDA kernels and main stream

We use an algorithm developed from scratch to im-
plement our model. Self-developed CUDA kernels and
available optimized parallel libraries are used alternately.
Among the libraries we can name: the GPU-suited Fast
Fourier Transform library cuFFT [10] from the NVIDIA
CUDA Toolkit, the STL-like Thrust library [11] of paral-
lel standard algorithms (reductions, scannings, searches,
etc.) and the counter-based Random Number Genera-
tor named PHILOX, from the Random123 open-source
library [12].

As anticipated in the previous section, the equation of
motion for the local stresses is resolved in several steps:

1) Computation of 47!(7) in real space, basically the
product o(r)n(r) times constants (Eq.4).

2) Discrete Fourier transform (DFT) of 47! (r).
3) Gq times 42! pointwise multiplication (Eq. 8)

4) Euler step integration in Fourier space using the
increment of Eq.7.

5) Inverse discrete Fourier transform of the resulting
o(q) giving as a result the scalar stress field at the
incremented time o(7,t + dt).

6) Update of state variables n(r) according to Eq.5.

From a computational viewpoint, steps 1, 3, 4 and
6 can be trivially computed in parallel, since we need
only to read and write arrays locally with no interdepen-
dence. This is easily implemented in massively parallel
routines with a SIMD (Single Instruction Multiple Data)
approach. We use either self-developed CUDA kernels or
Thrust well-settled functions for each of this steps. At
steps 2 and 5, we make use of the cuFFT library, espe-
cially powerful in the transformations of real or complex
arrays with an x dimension being strictly a power of two.

Besides the evolution of the system, we need also to cal-
culate certain physical quantities with some frequency as
time evolves. We are interested, for example, in instan-
taneous global values as the average stress and average
activity. To account for this measurements, we make in-
tensive use of Thrust routines, as the parallel reduce.

Our CUDA kernels are moderately optimized, trying
to keep aligned and coalesced memory access, avoiding
threads divergence and atomic functions. Further op-
timizations are still possible, but we choose to preserve
code readability over elaborated tricks that obfuscate the
code for a negligible speedup. As defensive programming
techniques we use assertions and each routine is indepen-
dently tested before implementation.

The structure of the main stream is simply as follows:

e Initialization

e Time loop:

— System Update (as itemized above)
— if (condition) Measures
— if (condition) Print results

e Final averages, printing and cleaning.

We have created a C++ class to host our functions and
keep a clean main() routine where we set up the physical
protocol for the simulation. CUDA kernels, used by the
class functions, are described in a separate file for further
clearness.

Validation of the overall program is made by comput-
ing a full flow curve in a wide range of shear-rates and
comparing with independent serial implementations of
the same model. These tests also serve us to know that
with the parallel implementation and the use of a GPU
we obtain a speed up of 100x and beyond respect to a
single-CPU serial version of the same algorithm.

Our source codes are freely available to download,
modify and use under GNU GPL 3.0 at [13].

POST-PROCESSING AND DATA ANALYSIS

To obtain compound averages as the distributions of
stress drop sizes or the avalanche shapes presented in



the manuscript, we make use of Python scripts [14] do-
ing a post-processing of the stress time series output by
our algorithm. Since data files attain a considerable size
(up to a couple of gigabytes), care is taken in using fast
load functions and list operations rather than array op-
erations, to reduce the processing time; which is, in any
case, always much shorter than the simulation time to
obtain the raw data.

Power-laws exponent fitting and error estimation
procedure

In Fig. 1 and Fig. 2 of the manuscript scaling regimes at
low shear rate span over wide ranges (about four decades
for Ps and two decades for Pr or P.). As the scaling
regimes can be quite clearly identified by eye, we perform
power-law fits in manually selected regions, avoiding the
lower and upper cutoffs. Of course, this introduce a small
variation of the fitted exponents and an uncertainty, that
is considered in the error bar estimation of the measured
exponents.

Having determined the values of 7 and 7 from Pg
and Pr respectively, we fix them and proceed to scaling
analyses of data at different L and ¥ to estimate the
exponents d; and o that provide the best collapse of the
upper (exponential) cutoff of the distributions. We can
qualify the collapse either by eye or by computing the
relative deviations of the rescaled curves. This allows us
to have an error of estimation for exponent values within
the indicated error bars.

We have also tried a more sophisticated and systematic
way of estimating the exponent of power law histogram
as described in the work by Planet et al. [15]. However,
it does not give us better estimations than the ones we
extract from the ad hoc fittings.

In Table 1 of the manuscript we present all our fitted
exponents with their corresponding error bars. The only
non measured exponent is z, that is computed from the
relation z = dy /0.

Stress-drop shape averages and comparison with
analytical predictions

Each stress-drop has a certain duration 7. To ana-
lyze the stress-drop shapes, we consider only the stress-
drops of durations 7" that belong to the scaling regime of
Pr. This is, in the window of T" in which Pr is a power
law. We are interested in the average shape of stress
drops at different T'. In order to improve the statistics
of the shape averages we do a logarithmic binning on T,
with a rather small binning step, and consider the mid
value in logarithmic scale of each bin as representative of
the duration of all stress-drops found within the bin. In
this way, we are able to collect a good amount of stress

drops with the “same” duration. The average shape
of the stress-drops within a bin centered at T, is com-
puted as follows: Each stress-drop ¢ can be represented
as V;(t). First we rescale all stress-drops on their dura-
tion 7} defining V;() = V;({T}), where i = t/T; € [0, 1].
Then, we define the average shape of the stress-drops as
Vr(t) = = Vi 1), with N the number of stress-drops
fou(nzl in Igﬁeziilterffa)l.

Once we get Vr(#) for different T', we fit them with the
equation proposed in [16], Vo (£) o< B(#(1—1))¢(1 —as(t—
0.5)), leaving B, ¢ and ay as free parameters. From this
fitting, we find the power law dependence of B on T, the
exponent ¢ ~ § — 1, and the behavior of as(T), presented
in Fig.3(b) of the manuscript.

Multi-parameter dependence of the shape
asymmetric values a, and ay

We have characterized the “degree of asymmetry” of a
stress drop shape with the parameters a, and a, defined
in the manuscript.

We propose a common functional dependence for both
of them with 4, L, T as ay, ~ CL~%4~¢T~™, whit C
being a prefactor. A first step is to rescale a, getting
d, = ayLP4¢. If our assumption is right and the value
of b and ¢ are well chosen, a,(T) for different 4 and L
can be collapsed together on the same curve a, = CT~™.
Indeed, this is what we observe. The rescaled and merged
data sets are used to process a unique power law fitting.
We fit log,(a,) versus log,,(T) with y = kz + k by a
least-square method, where kK = —m and C' = 10”. For a
chosen pair (b, €), the least-square fitting method gives us
the error E(b,€) qualifying the fit. We span our choices
over a wide domain of (b,e) and repeat the procedure
for each pair, obtaining a surface E(b, ¢). The minimum
of E(b,e) provides therefore the best possible choice of
(b,€). After fixing them, we extract the parameters m
and C' from the corresponding fit of the rescaled data.

This proposed functional dependence and the above
explained procedure allow us to display as or a4 in a
continuum plane L-¥, as shown in the inset of Fig.3(a)
in the manuscript.
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