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Abstract. We study the finite-size fluctuations at the depinning transition for
a one-dimensional elastic interface of size L displacing in a disordered medium
of transverse size M = kLζ with periodic boundary conditions, where ζ is the
depinning roughness exponent and k is a finite aspect-ratio parameter. We focus
on the crossover from the infinitely narrow (k→ 0) to the infinitely wide (k→∞)
medium. We find that at the thermodynamic limit both the value of the critical
force and the precise behaviour of the velocity–force characteristics are unique
and k-independent. We also show that the finite-size fluctuations of the critical
force (bias and variance) as well as the global width of the interface cross over
from a power-law to a logarithm as a function of k. Our results are relevant
for understanding anisotropic size effects in force-driven and velocity-driven
interfaces.

Keywords: finite-size scaling, interfaces in random media (theory), fluctuations
(theory), transport properties (theory)
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1. Introduction

Understanding anisotropic finite-size effects in driven condensed matter systems is
important not only for their custom numerical simulation analysis and modelling, but
also to interpret an increasing amount of experiments performed on relatively small
samples with specially devised geometries, where one of the system dimensions can
be even comparable to a typical static or dynamical correlation length. The steady-
state dynamics of directed elastic interfaces in random media, experimentally realized
in driven ferromagnetic [1]–[5] and ferroelectric [6]–[10] domain walls, contact lines in
wetting [11, 12] and fractures [13, 14], is a non-trivial relevant example where this kind of
phenomenology arises. The study of driven domain wall motion in ferromagnetic micro-
tracks for instance [15], relevant for memory-device applications or metallic ferromagnet
spintronics [16], motivates the study of their motion in ‘wide’ samples, i.e. much wider
than the interface global width. Moreover, at the integration scale for modern nano-
devices, these tracks can also become thin enough to be comparable to the typical size of
the thermal nuclei controlling creep motion, thus yielding an experimentally observable
dynamical dimensional crossover [17]. At the other extreme, periodic systems such as
planar vortex lattices, charge density waves, or experimental realizations of elastic chains
in random media, motivate, through an appropriate mapping, the study of the motion
of large interfaces in periodically repeated ‘narrow’ media, i.e. much narrower than the
interface width [18]–[20].
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Figure 1. Schematic picture showing critical configurations for systems with
different values of the aspect ratio k. In (a) the critical configuration has a
width w comparable to the system transverse dimension M . In (b), w � M ′

and the configuration wraps several times, crossing over to the RP geometry,
w ∼ Lζ

RP

. In (c) w � M and w/Lζ is a function of k. In the thermodynamic
limit, if k is kept constant, transport properties converge to a unique RM limit.
If k → 0 the thermodynamic limit corresponds to the RP class parametrized by
the periodicity M ′. If k → ∞ the system has a dimensional crossover towards
the zero-dimensional Gumbel class (for Gaussian microscopic disorder), and the
steady-state motion is static.

Minimal models, such as the paradigmatic quenched-Edwards–Wilkinson equation
(QEW) and their close quenched disorder variants [21], were shown to successfully capture
experimentally observed universal dynamics such as creep [1] and depinning [12, 22]
phenomena. In spite of this, fundamental questions such as the possible thermodynamic
limits of these models, when supplemented with the usual periodic boundary conditions,
are not completely understood. Roughly speaking, the steady-state motion of extended
elastic interfaces is expected to be very different in very narrow samples from in very
wide samples because they actually sense rather different pinning force fluctuations from
the same microscopic model. The thermodynamic limit in between these two extremes
(i.e., neither infinitely narrow nor wide samples), hence, looks rather ambiguous [23]: it is
unclear whether it leads to a unique solution or to a family of solutions parametrized by
some properly defined aspect-ratio parameter.

Let us consider a driven QEW one-dimensional interface in a disordered sample
of dimensions L × M , with periodic boundary conditions, as schematically shown in
figure 1(a). For each sample, at zero temperature, a critical force f s

c separates a pinned
phase from a sliding phase characterized by a finite velocity vs. In finite systems, both f s

c

and vs fluctuate from sample to sample and their averages over all disorder realizations,
namely 〈f s

c〉 and 〈vs〉, depend both on microscopic details of the model (microscopic
disorder distribution, lattice discretization, etc) and the specific geometry of the sample

doi:10.1088/1742-5468/2013/12/P12004 3
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(boundary conditions, transverse size, etc). In [19] it was shown that if we choose M = kLζ ,
with ζ the depinning roughness exponent, and a Gaussian microscopic disorder, the critical
force distribution crosses over from a Gaussian (for k → 0) to a Gumbel distribution (for
k → ∞) in the large L limit. One can show that the ‘infinitely narrow’ k → 0 limit
corresponds to the so-called random periodic (RP) depinning universality class, while the
‘infinitely wide’ k → ∞ limit corresponds to a dimensional crossover towards the zero-
dimensional case describing a single particle in an effective one-dimensional potential.
In the former case, periodic effects arise when M turns out to be comparable to the
interface width, and becomes more and more important as k decreases further and the
interface winds more around the cylinder with perimeter M , as schematically shown in
figure 1(b). In the latter case instead, as schematically shown in figure 1(c), periodicity
effects are absolutely negligible but the roughness turns anomalous due to extreme value
statistics effects [24]. In fact, for fixed L and Gaussian disorder, 〈f s

c〉 → ∞ as M →∞;
so that, at zero temperature, a finite velocity is only possible in a non-steady-state [25].
The so-called random manifold (RM) regime, which exists between these two extreme
limits for any finite k, was shown to display a finite critical force fc in the thermodynamic
limit (fc = limL→∞〈f s

c〉), with sample to sample fluctuations vanishing as [19, 26, 27]
〈[f s

c − 〈f s
c〉]2〉 ∼ L−2/ν = L−2(2−ζ), given the STS relation ν = 1/(2− ζ). Finite-size effects

in a discrete version of the QEW model were also tackled in a very recent paper, [28], but
in a different framework. In that approach, the critical force is defined as the threshold
needed to attain a given ‘target’ for the mean interface position, and boundary conditions
are open in the direction of motion.

The previous results represent a considerable progress in the understanding of the
finite-size effects but still leave us with a rather ambiguous picture for applications and
analytical calculations. Important open questions are: (i) what is the dependence of fc,
and 〈[f s

c − 〈f s
c〉]2〉, with the self-affine aspect-ratio parameter k? (ii) is there a finite-size

bias [fc−〈f s
c〉] and how does it depend on L and k?. (iii) Is the RM thermodynamic limit

prescription for the critical force, limL,M=kLζ→∞, different from the one for extracting
the RM velocity–force characteristics? In the affirmative case, how does it depend on
k? (iv) Geometry and transport are closely related, as changes in the interface velocity
directly affect the location of one or several geometrical crossovers [29]–[31]. How sensitive
to the value of k are the geometry and the velocity of the interface? In this paper we address
these open questions and show that constant force simulations in finite samples actually
lead to an unambiguous thermodynamic critical force and velocity–force characteristics,
which are independent of k, as long as k is finite. We also show how the finite system
transport properties scale towards the (RP) k → 0 and (single particle or extreme RM)
k →∞ limits as a function of L. Finally we discuss how our results relate to the cases of
velocity-driven interfaces and other alternative methods used to define the thermodynamic
critical force.

2. Model, observables and method

We consider the driven QEW model at zero temperature, described by

γ∂tu(x, t) = c∂2
xu(x, t) + Fp(u, x) + f. (1)

doi:10.1088/1742-5468/2013/12/P12004 4
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This equation models the overdamped dynamics of the displacement field u(x, t) of a
one-dimensional elastic interface in a two-dimensional random medium. We will consider
here a sample of size L ×M with periodic boundary conditions in both directions. The
pinning force derives from a bounded random potential (i.e. random bond disorder),
Fp(u, x) = −∂uU(u, x), with correlations

〈[U(u, x)− U(u′, x′)]2〉 = R(u− u′)δ(x− x′), (2)

with R(y) a short-ranged function of range rf and 〈· · ·〉 standing for the average over all
disorder realizations.

In particular we study a model of equation (1) where the displacement field is discrete
in the x-direction, and the random potential U(u, x) is given by a sequence of uncorrelated
random (Gaussian) numbers glued by a piece-wise cubic-spline with rf = 1. The details
of the model are described elsewhere [32]. For each sample there is a unique critical force
f s

c and a unique critical configuration usc(x). Both quantities are computed in an efficient
and accurate way without actually solving the true dynamics [32, 33]. For f > f s

c , at long
times, the interface acquires a steady-state velocity vs. To obtain it, we solve the dynamics
of equation (1) from an arbitrary initial condition up to very long times using a parallel
algorithm [34]. We define the width w of the critical configuration:

w2(L,M) =

〈
1

L

L−1∑
x=0

[usc(x)− ucmsc]2
〉
, (3)

with ucm
s
c = (1/L)

∑L−1
x=0u

s
c(x) the sample dependent centre of mass position of the critical

configuration. When M ∼ Lζ it is well known that w2 ∼ L2ζ with [34] ζ = 1.250± 0.005.
In the following, we analyse the large-size limit of (i) the critical force, (ii) the velocity

for a fixed value of the external force and (iii) the width of the critical configuration, as
functions of both L and k, from the infinitely narrow sample to the infinitely wide sample.

3. Results

3.1. Summary of finite-size scaling results

Here we summarize our main results. Note that in one dimension, the roughness exponent
for the RM class is [34] ζ = 1.250, and for the RP class is [20, 35] ζRP = 1.5. A detailed
description and discussion of each result is left for the next sections. The main results are:

(1) The critical force reaches a k-independent value fc = limL,M→∞〈f s
c〉 in the

thermodynamic limit L,M → ∞ for any finite k = M/Lζ (see figure 2). This
value depends only on the microscopic details of the system. The velocity–force
characteristics also displays the same convergence towards a unique k-independent
thermodynamic value, v(f) = limL,M→∞〈vs(f)〉 (see figure 10).

(2) The average finite-size critical force 〈f s
c〉 approaches the value fc from above if k is

large, and from below if k is small, compared to a (non-universal) marginal value
k∗ ≈ 2.1 ± 0.1 (see figures 2 and 3). The asymptotic forms for this bias are well
described by

(fc − 〈f s
c〉)L2−ζ ∼

{
k1−2/ζ if k � k∗

−(log k)1/δ if k � k∗
(4)

doi:10.1088/1742-5468/2013/12/P12004 5
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Figure 2. Longitudinal finite-size dependence of the averaged critical force for
samples of size L×M , with M = kLζ . The (non-universal) thermodynamic limit
fc attracts any finite value of k, thus determining this property unambiguously for
the RM class. Also indicated is the (non-universal) thermodynamic RP critical
force for a periodicity M = 4. Note that for k = k∗ ≈ 2, finite-size effects are
negligible for several decades of L.

Figure 3. Same data as in figure 2 but showing the transverse finite-size
dependence, for each L, of the averaged critical force. Note the crossing at k∗ ≈ 2
(precisely we get k∗ = 2.1±0.1), bridging the Gaussian (k→ 0) with the Gumbel
(k →∞) critical force statistics, where finite-size effects become negligible.

with 1 < δ < 2 (see figures 4 and 7), and consistent with the critical force distribution
tail of the form lnP (f s

c , L,M = k∗L) ∼ −f s
c
δ with δ = 1.2± 0.1 (see figure 6). When

k ' k∗ the finite-size effects are small, but the convergence to the thermodynamic
value displays the same scaling, fc − 〈f s

c〉 ∝ L−(2−ζ).

doi:10.1088/1742-5468/2013/12/P12004 6
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Figure 4. Negative finite-size bias of the critical force, fc − 〈f s
c〉, for small k

values. Inset: raw data. Main: scaled data. In this regime the shift is controlled
exclusively by M and by the RM depinning roughness exponent ζ.

Figure 5. Finite-size fluctuations of the sample critical force, 〈f s
c
2〉 − 〈f s

c〉2, for
small k values. Inset: raw data. Main: scaled data. In this regime the fluctuations
are well described by 〈f s

c
2〉 − 〈f s

c〉2 ∼ L−2(2−ζ)k2(1−3/2ζ). Note that in order to
have a non-zero limk→0[〈f s

c
2〉 − 〈f s

c〉2], we need ζ → 3/2 in agreement with what
corresponds to the (one-dimensional) RP class [〈f s

c
2〉−〈f s

c〉2]∼ L−1 and roughness
exponent ζRP = 3/2.

(3) The sample to sample fluctuations of the critical force are well described by

(〈f s
c
2〉 − 〈f s

c〉2)L2(2−ζ) ∼
{
k2(1−ζRP/ζ) if k � k∗

(log k)−2(1−1/δ) if k � k∗
(5)

so they decrease with increasing L or k (see figures 5 and 8).

doi:10.1088/1742-5468/2013/12/P12004 7
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Figure 6. Scaled distribution function for the critical force, y = σfP [fsc (k = 2)],

against x = (f s
c − 〈f s

c〉)/σf , with σf =
√

(〈f s
c
2〉 − 〈f s

c〉2). Different system sizes
are shown, L ×M with M = kLζ for k = 2. The large fsc tail can be fitted to a
stretched exponential, P (fsc ) ∼ exp[−fsc δ], characterized by δ = 1.2± 0.1, as can
be observed in the inset.

(4) The width of the critical configuration behaves as

wL−ζ ∼
{
k−(ζRP/ζ−1) if k � k∗

(log k)ζ/2δ if k � k∗
. (6)

The roughness thus always increases with increasing L but has a non-monotonous
behaviour with k, decreasing for small k and increasing for large k. Its minimum is
reached for a value k . k∗ (see figure 9).

3.2. The thermodynamic limit of the critical force

The existence of a unique critical force fc and velocity–force characteristics v(f) (see
section 3.4) for all finite values of k shows that the transport properties of the QEW
model have an unambiguous thermodynamic limit. In other words, the infinite family of
systems described by (the same) equation (1) but with (different) geometries parametrized
by the self-affine aspect-ratio parameter k, is attracted to a unique RM behaviour in the
large-size limit (see figure 2). Note also that, even if fc and v(f) are not universal, they are
intrinsic; i.e., they depend only on the parameters appearing in the microscopic equation
of motion.

3.2.1. Finite-size effects for small k. When k is much smaller than k∗ ∼ O(1) (i.e. M �
Lζ), the system can wrap around M several times and, thus, sense the transverse
periodicity of the disorder. Indeed, at a characteristic length LM ∼ M1/ζ � L the
geometry of the interface crosses over from the RM to the RP class, parametrized by
the periodicity M . This crossover is well manifested in the structure factor 〈|uc(q)|2〉
of the critical configuration, which displays [20], at q ∼ L−1

M , a crossover from the RM

doi:10.1088/1742-5468/2013/12/P12004 8
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Figure 7. Positive finite-size shift of the critical force, fc−〈f s
c〉, for large k. (a) The

shift decays as L−(2−ζ), with a k-dependent prefactor. (b) As expected from
extreme value statistics, at the largest k the shift increases with k logarithmically,
fc − 〈f s

c〉 ∼ (log k)1/δ, with δ = 1.2 in agreement with the tail exponent obtained
in figure 6. We compare with δ = 2 expected for the maximum of iid Gaussian
random variables and δ = 1 for the maximum of iid exponential variables.

roughness exponent ζ = 1.250 (i.e., 〈|uc(q)|2〉 ∼ 1/q1+2ζ) to the RP exponent4 ζRP = 3/2
(i.e., 〈|uc(q)|2〉 ∼ 1/q1+2ζRP) when increasing the observation length-scale q−1.

When L grows with fixed k, LM grows as LM ∼ k1/ζL. Since the average critical force
〈f s

c〉 and velocity 〈vs〉 for a finite system are determined by the typical behaviour at small
length-scales (l < LM) or short wavelength modes, the critical force must approach the
RM thermodynamic value fc as LM grows, even when the large scale geometry (l > LM)
is still described by ζRP instead of ζ. Since, for our model of equation (1), the RP critical
force f RPc ' limL→∞〈f s

c(L,M)〉 with M ∼ 1 is always smaller that the RM critical force
fc, for small k the thermodynamic limit is approached from below, as can be observed

4 Note that ζRP ≡ ζL = (4 − d)/2 in d = 1, where ζL is the Larkin exponent. This reflects the fact that the RP
fixed point with ζ = 0 is unstable due to a self-generated random force [35].

doi:10.1088/1742-5468/2013/12/P12004 9
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Figure 8. Finite-size fluctuations of the critical force 〈f s
c
2〉 − 〈f s

c〉2, for large k.
(a) 〈f s

c
2〉−〈f s

c〉2 ∼ L−2(2−ζ), same as in the low k regime (figure 5). (b) Dependence
with k. We find 〈f s

c
2〉−〈f s

c〉2 ∼ (log k)−2(1−1/δ), consistent with the finite-size shift
expected from extreme statistics. Note the consistency with δ = 1.2 from figure 7.

in figures 2 and 3. Furthermore, we can see in figure 4 a negative finite-size bias of the
critical force fc − 〈f s

c〉 for small values of k that smoothly follows equation (4).
Let us introduce a heuristic argument to understand the scaling. In principle, one can

think of the string as being composed of L/LM = k−1/ζ � 1 ‘RM blocks’, of longitudinal
size LM and transverse size M . Note that each of these blocks has precisely the ‘proper’
aspect ratio LζM/M = 1. If we consider that each of these blocks participates in the
total critical force with independent contributions, such that they average to fM with
a dispersion σM , where · · · stands for an average over the independent RM blocks, then
we can write:

〈f s
c(L,M)〉 ≈ fM (7)

〈f s
c
2(L,M)〉 − 〈f s

c(L,M)〉2 ∼ σ2
M

L/LM
. (8)

doi:10.1088/1742-5468/2013/12/P12004 10

http://dx.doi.org/10.1088/1742-5468/2013/12/P12004


J.S
tat.M

ech.(2013)
P

12004

Uniqueness of the thermodynamic limit for driven disordered elastic interfaces

Figure 9. Anisotropic finite-size analysis of the width w of the critical
configurations. (a) Raw data. (b) Scaled data, according to w ∼ Lζ , versus k.
In the low k regime, w ∼ Lζk−(ζRP/ζ−1) (dashed line). Note that for a non-zero
limk→0w we need ζ → ζRP = 3/2, corresponding to the (one-dimensional) RP
class (compare with the critical force fluctuations in the same regime shown in
figure 4). The width for large k is roughly described by some power-law of log k
(dot-dashed line). The solid line indicates k∗ = 2.1. (c) Scaled data, according to
[w2(k, L)−w2(k∗, L)] ∼ L2ζ(log k)ζ/δ and using the values ζ = 1.250 and δ = 1.2,
showing the agreement between the data and the scaling prediction.

doi:10.1088/1742-5468/2013/12/P12004 11
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Figure 10. Finite-size effects in the mean velocity for different values of the
self-affine aspect ratio k, and the same driving force f = 1.95 > fc. We observe
that velocity curves for finite k values are attracted to the same limit v(f) ≈ 0.5,
except for k = 500, where rare blocking configurations still dominate and f s

c > f
for the range of L values analysed. The black dashed line indicates the estimation
of the stationary velocity in the thermodynamic limit limL→∞〈vs(f)〉|k → v(f).

The above assumptions are consistent with the fact that f s
c has almost a Gaussian

statistics [19] if M � Lζ , by virtue of the central limit theorem for the sum of many
pinning forces with finite variance, which are uncorrelated at distances smaller than LM .
If fM represents minus the average pinning force on a given block of size LM ×M , then
we can write fM ∼ f s

c(LM ,M). Since the interface in each block is, by definition, in the

RM regime, we can write σM ∼ Lζ−2
M for its sample to sample fluctuations. We thus get:

〈f s
c(L,M)〉 ≈ 〈f s

c(LM ,M)〉 (9)

〈f s
c
2(L,M)〉 − 〈f s

c(L,M)〉2 ∼ k2(1−3/2ζ)L−2(2−ζ). (10)

First, let us note that the predicted finite-size scaling dependence on L and k for
〈f s

c
2(L,M)〉 − 〈f s

c(L,M)〉2 is indeed what we observe in figure 5. Second, let us note
that 〈f s

c〉 depends only on M (as LM = M1/ζ), consistent with the behaviour shown in
figure 4. If this bias scales with the longitudinal size in the same way as the sample to
sample fluctuations, one can predict [fc − 〈f s

c(L,M)〉] ≈ [fc − 〈f s
c(LM ,M)〉] ∼ Lζ−2

M ∼
M2/ζ−1 ∼ L−(2−ζ)k(1−2/ζ), as shown in figure 4.

It is interesting to note that in order to have limk→0

[
〈f s

c
2(L,M)〉 − 〈f s

c(L,M)〉2
]
∼

k2(1−3/2ζ)L−2(2−ζ) finite in the L → ∞ thermodynamic limit, which corresponds to
the RP class with a fixed periodicity M , we require that ζ → ζRP = 3/2. Therefore,
〈f s

c
2(L,M)〉 − 〈f s

c(L,M)〉2 ∼ L−1, again consistent with the prediction for the critical
force fluctuations in the RP class.

3.2.2. Finite-size effects for large k. When k is large, periodicity effects disappear, since
the critical configuration cannot wind around the cylinder of perimeter M . In turn, we
start to observe extreme value statistics effects. As described in [19], in the k →∞ limit
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the critical force distribution tends to a Gumbel function; i.e., the critical force of each
sample can be thought of as the maximum of independent identically distributed (iid)
variables with a (stretched) exponential-tailed distribution. This explains why 〈f s

c(L,M)〉
approaches fc from above in figure 2. Indeed, considering 〈f s

c〉 as the maximum among
the critical forces of many independent configurations we can expect a growth with
increasing M at L fixed, which is observed in figure 3. Since metastable (or quasi-critical)
configurations just below (or above) the depinning transition are essentially decorrelated
in a distance of the same order as its width w ' Lζ (as argued in [28]), the number of
such independent random variables is precisely k = M/Lζ .

Let us analyse the case when k is finite and close to k∗. On one hand, in this case
finite-size effects are less pronounced, as shown in figure 2. We can expect that, in the
same sense that f s

c is attracted to fc, the distribution function should also be attracted
to a thermodynamic limit which would be close to the one with k = k∗. Note that the
critical force f s

c of a system of size L× k∗Lζ is distributed according to a function which
is intermediate between the Gaussian and the Gumbel [19]. Although the shape of this
function is not known analytically, we know that it must decay faster than a power-law,
since the maximum among k = M/Lζ of such systems is attracted to the Gumbel class in
the k→∞ limit. In fact, this effect was recently observed for the cumulative distribution
of thresholds in the discrete version of the model [28]. To support this idea, let us consider
the tail of P (f s

c) described in particular as a stretched exponential decay, lnP (f s
c) ∼ −f s

c
δ,

with 1 ≤ δ ≤ 2 (the bounds corresponding to the Gaussian case, δ = 2, and to the Gumbel
case, δ = 1). We show in figure 6 the distribution function for the sample critical force f s

c

corresponding to k = 2, where the system size effects are almost negligible. It is shown
in this case that the tail exponent characterizing the stretched exponential behaviour is
δ = 1.2± 0.1. The same exponent δ is observed for different values of k and we expect it
to be universal, as are the critical exponents ζ, ν, β, etc. It would be interesting to check
that δ is not affected by the presence of a different disorder distribution or geometry5.

Therefore, based on the observed stretched exponential behaviour and from
standard extreme value statistics arguments [36] we get that the average of f s

c =

max{f (0)
1 , f

(1)
1 , . . . , f

(k)
1 } should grow as 〈f s

c〉 − fc ∼ L−(2−ζ)(log k)1/δ. Here we have used
again that the finite-size bias for a L×Lζ (or k ∼ 1) system behaves as the sample to sample
fluctuations 〈f1〉 − fc ∼ L−(2−ζ) in the L → ∞ limit. This prediction is consistent with
what is found in the simulations, as shown in figure 7. The large k behaviour is consistent
with the obtained value of the tail exponent δ = 1.2. Within this picture, standard extreme
value arguments also predict 〈f 2

c 〉−〈f s
c〉2 ∼ L−2(2−ζ)(log k)−2(1−1/δ). This is also consistent

with figure 8, where we compare the prediction using the same value of δ as obtained in
figure 6. As can be observed in figure 8(b), in the large L limit the data is consistent with
the value of δ = 1.2± 0.1, ruling out the bounds δ = 2 for the maximum of iid Gaussian
variables, and δ = 1 for the maximum of iid exponential variables.

It is interesting to note that since δ > 1 the sample to sample fluctuations of the
critical force decrease for increasing k, unlike the mean value of the critical force, which
increases with k. Therefore, the growing sample critical force reaches a sharply defined
value in the large k limit. This might be important for experiments.

5 Note that in statics the value of δ characterizing the tails of the free energy is well known. In particular, for
d = 1, δ = 3/2 for all boundary conditions, and this value is one of the fingerprints of the Tracy–Widom family.
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3.3. Finite-size effects in the roughness of the critical configuration

The typical interface global width or roughness also manifests size effects at depinning,
which are consistent with the finite-size scaling for the critical force.

Let us first describe the low-k behaviour of the width w shown in figure 9. From
the study of the RM to RP crossover at LM ∼ M1/ζ � L we know that [20] w(L) ∼
LζM(L/LM)ζ

RP

. We thus get

w(L) ∼ k−(ζRP/ζ−1)Lζ (11)

consistent with the asymptotic behaviour shown in figure 9(b) for small values of k, where
ζRP = 3/2 for our one-dimensional case.

Turning now to the behaviour of the roughness critical configurations at large values of
k, we can see that, interestingly, it displays an approximate logarithmic growth with k, as
shown in figure 9(b). This was already observed in [24]. Here we link such behaviour with
the critical force statistics and predict its scaling form. We start by noting that in order to
have a logarithmic growth of f s

c with k in this regime, either the individual pinning forces
on the monomers of the critical configuration get more correlated in order to increase f s

c , or
they remain uncorrelated but acquire an enhancement of their dispersion with increasing
k. Since we do not observe increased correlations between the individual pinning forces
acting on the monomers of uc for large k, the last scenario is the most plausible. A
logarithmic enhancement in the prefactor w2/Lζ can thus be heuristically understood
as follows. From the Larkin formulation we can define effective Larkin length Lc ∼
(fc/crf )

−1/2 and roughness w ≈ rf (L/Lc)
ζ . Extending this idea to sample fluctuations,

we consider that 〈Lsc(k, L)〉 ∼ (〈f s
c〉/crf )−1/2 and w ≈ rf (L/〈Lsc〉)ζ . Therefore, using that

〈f s
c〉−fc ∼ (log k)1/δ we easily get w(k, L)/Lζ ∼ (log k)ζ/2δ in the very large k limit, where
〈f s

c〉 � fc. Since our data does not reach such a limit, we cannot neglect the fc contribution.
A corrected version reads (w(k, L)/Lζ)2 − (w(k∗, L)/Lζ)2 ∼ (log k)ζ/δ, where we have
used the k-independent thermodynamic limit limL→∞w(k, L)/Lζ ≈ w(k∗, L)/Lζ ∼ rfL−ζc .
Figure 9(c) presents a scaled version of the data to test this idea, where we have used that
ζ = 1.250, δ = 1.2 (see fit in figure 7) and k∗ ≈ 2 (see figure 3), and shows a very good
agreement with the scaling prediction.

In summary, the increasingly rare critical configurations for large k can be thus seen as
being pinned by an effectively stronger uncorrelated microscopic disorder keeping the same
elasticity and microscopic disorder correlator range. In other words, extreme statistics
shorten the effective Larkin length on those critical configurations.

3.4. Finite-size effects in the velocity–force characteristics

When f > f s
c , the elastic interface moves steadily with velocity vs(f) and the geometry

displays a crossover in the roughness from the exponent ζ to the exponent ζth = (2−d)/2 at
the characteristic scale ξ ∼ v−ν/β. Given the presence of this extra length-scale depending
on the force excess, it is not obvious whether the same thermodynamic limit prescription
for the RM critical force (i.e., to fix the aspect-ratio parameter k = ML−ζ) will work for
the velocity, yielding a unique k-independent velocity limit v(f).

In figure 10 we show that the prescription for fc works well for v(f). We observe that
a wide range of values of k tends to converge to a k-independent, force dependent steady-
state velocity, limL→∞〈vs(f ; k, L)〉|k → v(f). At finite L, we observe that 〈vs(f)〉 > v(f)
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Figure 11. Schematic k-dependence of the velocity–force characteristics. For k >
k∗ the critical force bias is positive, f s

c < fc, and therefore the velocity at a given
force f > fc approaches the thermodynamic limit from below, 〈vs(f)〉 < v(f).
The opposite is observed when k < k∗: the critical force bias is negative and
hence the velocity is 〈vs(f)〉 > v(f).

for small k, and 〈vs(f)〉 < v(f) for large k. This is consistent with the behaviour of the
finite-size average critical force (see schema in figure 11): f s

c is biased to greater values of
f as k increases above k∗, so, if we assume a monotonous and continuous behaviour of
the velocity–force curve, for a given f the velocity average 〈vs(f)〉 should be smaller as
k > k∗ increases. Indeed, for very large k, we can be in the situation where f < f s

c and
thus 〈vs〉 = 0, as is seen in figure 10 for k = 500. On the other hand, for small values of
k < k∗, f s

c decreases with k, and at a fixed force f the average velocity will be larger as k
decreases. This is why curves for k < k∗v ' 1 ∼ k∗ converge from above in figure 10 to the
thermodynamic limit.

In figure 12 we observe the behaviour of 〈vs(f)〉 as a function of k for different system
sizes. For the working force f = 1.95 > fc, a crossing of all curves at k∗v ' 1 can be
observed, but also, how curves are apparently attracted to a unique constant value, both
above and below k∗v , as L increases. We find that k∗v ∼ O(1), without appreciably varying
with f . This shows that the same critical force prescription is adequate to obtain the
thermodynamic limit of the velocity–force curve, and that finite-size effects at any finite
k vanish as L→∞.

4. Discussion

4.1. Comparison with the velocity-driven ensemble

In this paper we have defined the critical force of a one-dimensional QEW line in a
given finite disorder sample of dimensions L ×M with periodic boundary conditions in
all directions, driven by a uniform, constant force f . In some situations, however, the
interface is velocity-driven in a infinitely wide medium, and the driving force f is replaced
by a term m2[vt−u(x, t)], with v the imposed mean velocity. We will argue that the results
of equations (4), and (5) are also relevant for this case, and that a close connection exists
simply by relating the curvature parameter m and the transverse periodic dimension M .
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Figure 12. Same data as in figure 10 but showing the transverse finite-size
dependence, for each L, of the averaged stationary velocity. Note the crossing
at k∗v , where finite-size effects become negligible, bridging the Gaussian (k → 0)
with the Gumbel (k →∞) statistics.

Since the parabolic drive sets a characteristic length-scale Lm ∼ 1/m in the longitudinal
direction, we can compare it directly with the length LM ∼ M1/ζ set by the periodic
boundary conditions in the constant force simulations. We can hence relate M1/ζ and
1/m, so the limit of small m corresponds to the large M limit, and vice versa.

The critical force is defined in the quasistatic limit of the velocity-driven interface as
〈f s

c(L,m)〉 ≡ limv→0+m
2〈[vt−u(x, t)]〉 for stationary values of u(x, t). It can be compared

with the critical force 〈f s
c(L,M)〉 discussed in the previous subsections. Functional

Renormalization group (FRG) calculations predict when L → ∞ that 〈f s
c(m)〉 = fc +

c1m
2−ζ in the small m limit, with c1 a negative constant and fc the thermodynamic

critical force. If we assume L very large and define km = (Lm)−ζ , such a prediction reads
〈f s

c(m)〉 = fc + c1k
1−2/ζ
m Lζ−2. As shown in equation (4), this is exactly the same scaling we

find for 〈f s
c(L,M = kLζ)〉 for small k, with fc > 〈f s

c(m)〉 assured by the FRG prediction
c1 < 0. This supports our identification of k with km, and we can expect equations (4)
and (5) to hold in the velocity-driven ensemble by replacing k 7→ km.

To further emphasize the connection we note that the numerical extrapolation of
〈f s

c(m)〉 in the velocity-driven ensemble yields a value [37] fc ∼ 1.9, indistinguishable
from ours, fc ≈ 1.916± 0.001, for the same microscopic disorder. On the other hand, the
prediction 〈f s

c(m)〉 = fc + c1k
1−2/ζ
m Lζ−2 shows that for small km (i.e. large m compared to

L−1), the critical force is smaller than fc, as we see in figure 4 for small k. Moreover, as
shown in figure 2 of [37], when km is large (i.e., m small compared to L−1), f s

c(m) can
become larger than the extrapolated fc. This is due to extreme value statistic effects similar
to the ones discussed in the previous sections: as the curvature of the parabola vanishes
for a fixed L, the interface can get blocked in rarer configurations with systematically
higher critical forces.

In summary, the transport properties have a unique limit and similar finite-size effects
in the two ensembles. Only the roughness of the critical configurations for small k or km
are different, since for the velocity-driven case, the roughness beyond the length-scale
Lm ∼ 1/m crosses over from ζ ≈ 1.25, to ζm = 0 (instead of ζRP = 3/2), so w ∼ m−ζ .
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On the other hand, for small m, such that mL � 1, we expect to observe a behaviour
analogous to equation (6) for large k. This has not been analysed yet in the velocity-driven
ensemble.

Finally, it is worth mentioning that an original alternative approach was analytically
implemented in [23], by defining a critical force for a fixed centre of mass position.
This choice avoids rare configurations as the interface cannot explore the disorder in
the transverse directions beyond the length-scale set by its own width w ∼ Lζ . It is thus
equivalent to working with a system size satisfying k ∼ 1 (or km ∼ 1), and must thus
have the same unique thermodynamic limit. The advantage of this method is that it is
parameter free, and size effects are controlled only by L. In addition, it does not present
crossovers, and the critical configuration geometry always belongs to the (non-extreme)
RM class. However, so far this method has been implemented only analytically.

4.2. Implications for the non-steady universal relaxation of the velocity

It is interesting to relate the finite-size bias of the critical force, equation (4), with the
universal non-steady relaxation at the thermodynamic depinning threshold [38]. In [34]
it was noted that the short-time relaxation of an initially flat interface at the RM
thermodynamic critical force fc can be effectively described as an interface of ‘size’ `(t)
which is quasistatically driven by the finite-size bias of the critical force. That is, we
assume that v(t) instantaneously satisfies the steady-state relation v(t) ∼ [fc− fc(`(t))]

β,
where the effective ‘size’ grows with time as the growing correlation length `(t) ∼ t1/z,
with z the dynamical exponent. By assuming fc − fc(`(t)) ∼ `(t)ζ−2, we get the critical
relaxation v(t) ∼ t−β/νz.

The finite-size scaling of equation (4) allows us now to better justify the above
assumptions. The initially flat relaxing string of size L, in the small (non-steady) velocity
limit such that the adiabatic approximation holds, effectively becomes a (pseudo) critical
configuration confined in a system of effective size L×w(t). This situation is equivalent to
the one described in section 4.1 with m(t) ∼ w(t)−1/ζ , in the quasistatic drive limit. This
defines an effective aspect-ratio parameter k(t) ∼ w(t)/Lζ � k∗, and allows us to write,

v(t) ∼ [fc − fc(L, k(t))]β ∼ k(t)β(1−2/ζ) ∼ t−β/νz, (12)

where in the second term we have used the k� k∗ scaling for the bias of the critical force,
equation (4), and in the third term the STS relation ν = 1/(2 − ζ). When k(t) ∼ k∗ the
bias vanishes, corresponding to the vanishing of the velocity in a finite system when [38]
`(t) ∼ L. The string is then blocked by a typical RM critical configuration. In order to
explore rare critical configurations we need to drive the system above the thermodynamic
critical force f > fc. Then, from equation (4), and the same adiabatic approximation for
v(t), we can expect a crossover to a new regime in the non-steady relaxation, from a
power-law to a slower logarithmic decay.

5. Conclusions

We have shown that there exists a unique, unambiguous thermodynamic limit for the
transport properties of driven elastic interfaces in random media, irrespective of the
precise relation between the longitudinal and transverse dimensions of the system, only
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provided they maintain a definite scaling relation in the large-size limit. Namely, any finite
value of the self-affine aspect-ratio parameter k = M/Lζ , with ζ ' 1.250 the depinning
exponent, leads to exactly the same transport properties in the large-size limit. We have
also characterized in detail the finite-size effects in the critical force fluctuations for small
and large values of k. Our results thus extend the ones of [19] in several useful ways. In
particular, we show that the thermodynamic critical force is not only finite if k is finite,
but that it is independent of k; i.e., it is unique. We also report a finite-size bias or shift
in the critical force, which was unnoticed before, as, in general, only reduced variables (of
zero mean) were analysed. We give good evidence that the velocity–force characteristics
is itself a unique curve in the thermodynamic limit, and interpret it as an attractor for
the stationary and even non-stationary behaviour of any finite system with well defined
geometry. Finally, we have also shown that our results are completely consistent with
the ones obtained for velocity-driven interfaces, where f → m2(vt − u(x, t)), so the two
ensembles have the same transport properties in the thermodynamic limit and are thus
equivalent.

Acknowledgments

ABK and AR acknowledge partial support by the France–Argentina MINCYT-ECOS
A12E05. EEF acknowledges partial support by the France–Argentina Bernardo Houssay
Program 2012. SB acknowledges partial support by the France–Argentina MINCYT-
ECOS A12E03. Partial support from Project PIP11220090100051 (CONICET) and
Project PICT2010/889 are also acknowledged.

References
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