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We detail to some extent the numerical implementation and codes used to obtain the results
presented in the manuscrip [URL will be inserted by publisher].

I. BRIEF OVERVIEW OF GPGPU
COMPUTING

The acronym GPGPU stands for “General Purpouse
Graphics Processing Unit”. GPGPU Computing is a
common denomination for the practice of using GPUs
(Graphics Processing Units) as a hardware facility to run
general-purpouse progarms, apart from rendering graph-
ics (or not). The fact that the GPU is used as an acceler-
ator collaborating with the CPU is only one example of
heterogeneous computing. Heterogeneous architectures
came to mitigate the technical barriers emerged in the
development of faster and faster processors [1]. From
a decade on, the gain of GFlops in modern computers
is given more by their ability of processing applications
in parallel and providing different hardware profits (as
cached memory flow) than by their increase in processor
clock frequency. As a consequence, software in general
was pushed to be programed for parallel performance.
The improvement of compilers relieves in some cases the
lack of parallel implementations, but in many others, ap-
plications have to be re-formulated to fit new architec-
tures. In this sense scientific-computing software is not
an exception and we should rethink our usual codes and
numerical simulation techniques.

Independently of their manufacturer, generation or
model, all GPUs share the same Single Instruction
Multiple Thread (SIMT) concurrency paradigm in or-
der to exploit their high parallelism and high memory
bandwidth[2]. Basically, the programming framework us-
ing SIMT paradigm consists in coding for an unlimited
number of parallel threads for all practical purposes [3]
(typically one thread per component of our system). A
remarkable point is that, from the programmer perspec-
tive the actual number of cores in our GPU is not impor-
tant at first glance. Memory issues, on the other hand,
arise as the main problem to work out. We code as we
were given an unlimited number of parallel processing
units, the compiler and a smart thread scheduler do the
rest for us [4]. By knowing better our GPU’s characteris-
tics (memory levels and sizes, number of cores, compute
capabilities, etc.) we can improve the code, orientate the
compiler and take real advantage of the hardware poten-
tial.

In short, the parallel simulation framework work as fol-
lows. The main stream of the program runs in a single
core of the CPU (the “Host”). The GPU (or “Device”)
is connected to the host through a high speed 10 bus slot

PCI-Express. The GPU has its own device memory, up
to several gigabytes. The Host runs the program’s serial
parts, manage data transfers between Host and Device,
modifies device memory, and launch kernels that are ex-
ecuted concurrently by hundreds of cores on the Device.
These kernels are functions that run on the Device acting
exclusively on device memory.

We work with NVIDIA GPUs, as it is our available
hardware. Simulations for the present work have been
run on Fermi architecture (GF100) GPUs, in particular
GeForce GTX 470, GeForce GTX 480 and Tesla C2075.

In the manuscript we have shown how useful can be the
massive parallelism of GPUs in the framework of statis-
tical mechanics simulations, in particular in the study
of the Quenched Edwards-Wilkinson elastic line. In this
Supplemental Material we present with some detail our
GPU implementations of the model wich, even with-
out being developped as a highly optimized codes, have
shown to be modest powerful tools.

II. GPGPU IMPLEMENTATION OF THE QEW
MODEL

In the last few years the use of GPUs to accelerate sim-
ulations has burst out in many areas of Physics and sci-
ence in general. In Statistical Physics several works have
been devoted to report implementations of spin models
on GPU architectures (see [5-8] and references therein)
and molecular dynamics [9, 10], for recent examples. In
particular, in the subject of interfases and surface growth
models concurrent implementations of the KPZ model
dynamics were also reported [11, 12]. All these papers
evidence the benefits of working with GPU’s implemen-
tations in statistical physics.

For the present work, we have implemented a GPU-
based parallel implementation of the QEW model. Our
codes are written in C+4 and C for CUDA. At it was
presented in section III-B of the manuscript, we numeri-
cally solve the equation

nowu(z,t) = cou(x,t) + Fy(u,z) + f, (1)

discretizing the system in L segments of size dz = 1 in
the z-direction (i.e., x — j =0,..., L—1, u(x,t) = u;(t))
while keeping u;(t) as a continuous variable.
Essentially, at each step we compute in parallel the lo-
cal forces acting on each segment u;, adding the elastic



force given by the Laplacian, the pinning force coming
from the disorder potential, the external driving force
and eventually a random Langevin noise playing the role
of a thermal bath. Given the instantaneous local forces,
an Euler evolution step is performed also in parallel.
Moreover, observables calculations and averages are com-
puted also by parallelized routines taking full advantage
of the GPU concurrence.

To model the continuous quenched random potential,
we can either read or dynamically generate uncorrelated
random numbers with a finite variance at the integer val-
ues of v and z and use interpolation to get F,(u,z). We
have developed two different codes realizing these op-
tions. In our first approach, the disorder potential is
determined from a precalculated L x M array of random
numbers taken from a given distribution. This is none
but the parallelized version of the code used in previous
works [13-15]. Our second approach consists, instead, in
generating the disorder dynamically as the string moves.
This new approach allows the system size in the u direc-
tion to be virtually infinite, but a period for M can be
imposed if desired. In both approaches we have used pe-
riodic boundary conditions in the longitudinal direction,
so ug is elastically coupled with uy_.

A. Parallelized QEW line on a preset disorder
potential

In our first implementation the disorder potential is
constructed from a L x M matrix of real values V (3, j)
taken randomly from a Gaussian or Uniform distribution.

Given V (i, j), we associates each value with a discrete
position i = |u], j = « (where |y] stands for the discrete
part of a given continuous variable y). We can either
construct a continuous spline for each z by (linearly or
cubicly) interpolating the values V(i,7) for fixed j, in
which case we have a random bond potential and the
pinning force F,(u,z) can be derived for each value of
u. Alternatively, we can consider V(|u],j) as a step
function force itself, in which case we have a random
field.

Both the string w(z) and the pinning force F,(u,x)
can be optionally chosen to be float or double type
variables. We have not noticed precision effects in our
test runs. Nevertheless, for all results presented in this
work we ensure u(z) to be a double precision array, since
it is an accumulative array during the string evolution.

The simulation of each sample consists of the following
steps:

1) Choose an initial condition u;(t = 0) for the string.
2) Set the disorder matrix V (4, j).

3) If a cubic spline is desired, calculate the potential’s
second derivative in each integer for interpolation.

4) Run the desired amount of updates (time steps)
consisting of:

— Calculate the total force at each point u; of
the string (including interpolation of the dis-
order spline when is needed).

— Evolve u(x,t) with an Euler integration.

— At selected times, calculate and accumu-
late for future averages the string’s center of
mass displacement e, (t), velocity v(t) and
quadratic width w?(t).

— Eventually, calculate and accumulate the
structure factor S, (¢).

5) Average and print results.

Arrays of Steps 1 and 2 can be either computed on
the Host and then copied to the Device or directly com-
puted on the Device. For the case where we need cubic
splines of the disorder potential, we also need to compute
an array holding the second derivative of the potential
V(|u], z), this is make in Step 3. Since this is done only
once for each sample, we simply implement in the Host
the usual Numerical Recipes [16] tri-diagonal solver to
calculate it. Step 4 proceeds completely on the Device,
with full parallelism, launching consecutive CUDA Ker-
nels. For example, for the kernel which computes the
total force at each point, each thread j (j =0,...,L—1)
independently reads the pinning force F},(j) from a device
memory array, calculates the elastic force using the in-
stantaneous value of u(j) and its neighbors sites u(j—1) ,
u(j + 1) (preserving periodic boundary conditions), adds
the uniform driving force, calls a random number routine
and adds a Langevin noise (if temperature is not zero)
and finally writes the resulting total force acting at point
(u,j) on a global array. With an array of forces at hand,
the Euler evolution step is trivially parallel. It is worth
stressing that we are not deviating from the usual (se-
rial) dynamics at any point, since we do not modify the
basic algorithm, we just replace dumb loops with CUDA
kernels. Calculations of averages over x to obtain u(t),
v(t), w?(t) are also executed in parallel taking advantage
of the Thrust library [17] provided in the CUDA Toolkit.
Sq(t) is calculated using the CUFFT library [18], a parallel
Fast Fourier Transform library for CUDA also provided
in the CUDA Toolkit [19]. Copies from Device to Host
only take place in Step 5, where we average over samples
and print the results on a file.

The implementation of a random number generator
(RNG) in GPUs is a topic of study itself (for a recent
review see [20]). For this first implementation we have
used the Multiply-With-Carry (MWC) RNG, which has
proven to success in classical spin systems [7, 20]. A
great advantage of MWC is that it allows the simultane-
ous generation of several independent random sequences
(basically, each thread has it’s own generator) and it has
a good trade-out of performance and statistical quality.



B. Parallelized QEW line on dynamically
generated disorder

Our second code is based on a different approach. It
basically consists of generating the disorder dynamically.
That is, as the line moves in the u direction we generate
the underlying disorder V (i, j) at each discrete position
(lu],J) in a consistent manner.

For the RF case we define F),(u,z) = V(|u], ), while
for the linear spline RB case we interpolate V(u,z) =
V(|u] +1,2) = V(|u]),z]/a, with a = 1, and derive the
force at each value of u.

The consistence of this procedure relies on the ability
to read always the same random number V(|u|, ) in a
particular place (|@],z). This can be done, of course,
storing each random number as we generate them, but
this option would be time expensive in terms of mem-
ory reads, which is not a good option in general, even
less for a GPU implementation. A much more elegant
solution come from the implementation of counter-based
RNG. Let us extend on this point because it is crucial.
Usual RNGs base their quality and large period on oper-
ating with linear algebra and/or logical transformations.
Counter-based generators, instead, have no state. These
RNGs use simple indexes or counters as an input and a
well complex hash function to produce a pseudo-random
number sequence. While such generators have not re-
ceived much attention for their use in simulations they
are common to the functions used in secret-key cryp-
tography. These kind of generators fit perfectly in the
GPGPU programing framework, since they do not need
to store a state, they allow several independent sequences
by setting different keys, and, the most important thing,
they have been proven to show excellent quality and per-
formance [20].

We have implemented the recently introduced
PHILOX RNG [21]. In the sequence of pseudo-random
numbers with key k£ and counter n

Zn = fr(n), (2)

we have chosen k to be a different number for each thread
j=0,....,L —1 (k = G(j), where G is some bijec-
tive function) and n to be the integer part of the in-
stantaneous string position for that thread n = |u(j)].
Though, given a position (|u],Z) we have a univocal way
of determining V (||, %) on-the-fly. Since the pseudo-
cryptographic biyections used by PHILOX are designed
to deliver essentially indistinguishable outputs for any
value of k, different keys assure us independent random-
number streams (up to 24 independent sequences for a
64-bit key). Notice that if the string moves forward and
backwards (which is actually the case when we have finite
temperature), the underlying disorder already visited can
be easily recovered without any memory record. While
going forward and backward on a sequence is trivial for
a counter-based RNG, it is an almost impossible task for
usual RNGs.

The implementation of PHILOX on GPUs encouraged
us to propose a different approach to the disorder repre-
sentation, saving huge amount of memory storage (within
this approach, our system effective size is L instead of
L x M) and reading, leading to an accelerated GPGPU
performance. Notice as well that, if we want to preserve
a finite period M for the disorder in the u direction, that
can be trivially done adding a modulo operation in the
definition of the counter n.

Besides this main point on the dynamical generation
of the disorder, the algorithm structure is based on the
first approach above. The drawback of this approach is
probably that in principle it only let to simulate linear
spline disorders. But workarounds can be find in future
implementations.

The peculiarity of our second code, besides the RNG
used, is that it is completely implemented using Thrust
functions instead of setting-up and launching CUDA ker-
nels. Thrust is a parallel algorithms library [17] which
resembles the C++ Standard Template Library. Its high-
level interface allows development without much knowl-
edge of GPU’s architecture. In addition, it enables porta-
bility between GPUs and multicore CPUs. The very
same code can be compiled with an “OpenMP” flag for
the backend system and it will use our multicore CPU as
the Device instead of using the GPU.

C. Comparative performance

In this work, our intention was to perform a first step in
the implementation on heterogeneous hardware of driven
elastic systems in disordered media. We are not pretend-
ing to present a highly-optimized code, but a code that
allows us to run simulations that where practically im-
possible to perform before in reasonable computational
times. Our main objective was to obtain original physi-
cal results. The full optimization of the codes is left for
further work or for other enthusiastic developers.

That said, we think that we have developed good pieces
of useful code. We present their performance here and
open them to the community for use, improvement and
modification [22].

Testing, validation and verification are important facts
on any kind of software, in particular on scientific soft-
ware. Although we have not programed autonomous test-
ings we have take carefully in mind this aspects at each
step of the programming. We have tested our codes in
the well known particular chooses of the parameters, e.g.,
without disorder, zero force, etc. Among passive security
measures, we use assertions (boolean predicates) related
to hardware limitations or to enforce preconditions on
algorithm running. We also check every return condition
of CUDA library calls and kernels.

For our benchmarking we ran the “old” single thread,
CPU-based, code and the two GPU-based codes pre-
sented in the previous subsections. Each code is not to-
tally comparable with the others in programing terms.
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FIG. 1. (Color online) The main plot shows the update step
mean computing time 7ypdate in milliseconds as a function of
the system size L, from the execution of our serial and par-
allel codes in a CPU + NVIDIA GTX 470 GPU platform.
In the inset we show T, = Tupdate/L in nanoseconds and the
practical speed-up of two cases with dashed lines, showing ac-
celerations that range between 187 and 521 for large systems.
Legends are LS:= Linear Spline, CS:= Cubic Spline, SP:=
Single Precision, DP:= Double Precision, dgd: dynamically
generated disorder.

Therefore, we have no intentions to report speed-ups in
terms of hardware, but rather, we intend to highlight
the practical speed-up that comes out when one compare
the computing times of different software-hardware (as a
whole) options.

In Fig.1 we show the mean computing time in millisec-
onds for a single update step as a function of the system
size. The values shown here where obtained running 2%°
steps of the update procedure and dividing by that num-
ber of steps. The update procedure includes calculating
for each j = 0,..., (L —1) all the instantaneous involved
forces, and preforming an Euler integration of u(x). In
the rest of this Supplemental Material we briefly discuss
our interpretation of this benchmark.

As can be seen from Fig.1, for large enough system
sizes the computing time of all codes scale approximately
as ~ L, as is expected since the number of arithmetic and
memory operations grows linearly with the number of
elementary components in the string of our model. We
compare computing times in this linear scaling regime
first, and the we comment about the “small” system sizes.

The CPU code is written in C/C++ using the GSL [23]
library for accelerated interpolation and the Blitz++ [24]
library for vector and matrix operations [25]. It is not a
highly optimized code but all the commonly known good
practices for a serial code have been considered.

Our CUDA codes are two, code “A”, the one presented
in Sec.IT A where we read the disorder from an array, and
code “B” presented in Sec.IIB where we dynamically
generate the disorder. For code A we use pure CUDA
Kernels for the update steps, while for code B the up-
date procedure uses Thrust functions [26]. To compare
different cases, we have varied the types and operations

precision (Float or Double), used different spline interpo-
lation schemes (Cubic/Linear) when allowed, and tested
the codes in different hardware platforms.

Case |single-core| CPU 4 GTX 470|CPU + Tesla C2075
CPU
time[ms] |time[ms]| psu |time[ms] pSu
CS DP| 54.49 0.301 181 0.396 138
CS Sp ~ 54 0.227 238 0.298 181
LS DP 46.46 0.123 377 0.152 305
LS Sp ~ 46 0.101 455 0.128 359

TABLE I. Mean update time execution and their related CPU
vs. CPU+GPU practical speed-up for a system size L =
65536 taken as an example. Platform: AMD Phenom(tm) II
X4 955 Processor @3.2GHz, NVIDIA Tesla C2075, NVIDIA
GTX 470. CS: Cubic Spline, LS: Linear Spline, DP: Double
Precision, SP: Single Precision, psu: practical speed-up. All
speed-ups are approximate numbers.

Case |single-core CPU|CPU + GTX 480
time[ms] time[ms]| psu
CS DP 42.22 0.238 186
CS Sp ~ 42 0.179 235
LS DP 36.55 0.098 373
LS SP ~ 36 0.076 477

TABLE II. Mean update time execution and their related
CPU vs. CPU+GPU practical speed-up for a system size L =
65536 taken as an example. Platform: Intel(R) Core(TM)2
Quad CPU Q9550 @2.83GHz, NVIDIA GTX 480. CS: Cubic
Spline, LS: Linear Spline, DP: Double Precision, SP: Single
Precision, psu: practical speed-up. All speed-ups are approx-
imate numbers.

The first thing that we can stress from the benchmark-
ing is that the Double Precision (DP) Cubic Spline (CS)
CUDA implementation of the QEW model (code A, DP-
CS option), the one which we have first implemented to
reproduce the well known results in CPU implementa-
tions, gives us a great improvement (above 138x). The
conservative user can choose to work with it to obtain
completely safe results and still have a great saving in
simulation time.

Let us comment further options, that have been sum-
marized in Tables I, II for the two different heterogeneous
platforms we have worked with. Here we have chosen
L = 65536 as an example in the regime where execution
time grows linearly with size. For the DP-CS case the
best practical speed-up (186x) is obtained with the GTX
480 GPU. On each case, we compare between C+-+ serial
and CUDA parallel codes running on the same machine,
one of them using a single CPU core and the other using
a CUDA parallelized scheme and a GPU in addition to
the CPU core. If we use Single Precision (SP) variables
and operations, which as far as we have seen does not



affect our results, computing times drops around ~ 30%,
representing a boost going up from 181x to 238x on the
GTX 470, for example.

Increasing M does not represent a noticeable impact in
the code performance but it does represent a considerably
increase in memory demand, since we need to allocate
arrays of size L x M. The Tesla C2075 GPU shows the
smaller speed-ups in all cases, even in double precision it
does not improve the GTX 470 performance, nevertheless
its big global memory (5.4GB) allows us to simulate large
L x M systems.

Another appreciable improvement in computing time
is seen when we use a linear spline (LS) either than a
cubic spline for the determination of the pinning poten-
tial. GPU computing times are in this case more than
2.4 times faster than the ones obtained for a CS. In other
words, the linear spline approach take ~ 40% of the time
that the cubic spline takes. This can be understand from
the fact that CS requires each thread to perform two ad-
ditional read operations from device global memory as
compared to the LS, the memory reads of an array hold-
ing the second derivative of the disordered potential at
each point. While in CPU cores (with a good cache mem-
ory) this is not expected to be a dramatically sensitive
issue (we see a slowdown of ~ 17% in execution time), on
GPUs this produce a more noticeable impact since per-
formance is clearly governed by memory transfers. The
averaged single update step time drops to 0.123ms for
the GTX 470 case, while our CPU code time only drops
to 46.46ms, representing a practical speed-up of 377x.

This very good performance of the LS case suits also to
our GPU code B, the one where we generate the disorder
dynamically. In this case, besides the good performance
of the LS spline, we save a lot of memory storage, since
we are free of disorder arrays. This allows us to increase
considerably L, and was exploited in Section IV-D of the

manuscript, and can be appreciated in Fig.1. We claim
that with these algorithm realistic simulations of sizes
L = 10° can be reached using only a single GPU (with
more than 4GB of memory) in a desktop computer.

A word should be said about what happens for “small”
system sizes. Bellow L = 8192 the computing times for
our GPU codes tend to saturate to a common value for
different L. This is because, in these cases, we are not
taking real advantage of the GPU power. In GPGPU
computing, memory latency issues are hidden under a
formidable scheduling of multiple threads [3]. If threads
are not enough, a lower bound imposed by the latency of
global memory access dominates the computing time.

The benchmark of our code B, shows a particularity.
We see that for small sizes its performance is bad as com-
pared with the code A, and also worst than the CPU code
for systems L < 256. This is something that it is not to-
tally clear for us, but we guess that it is related with an
overhead produced by the Thrust functions. Since we
do not control how those kernels are launched we cannot
avoid this overhead. Nevertheless, it is worth notice that
for large systems this code has roughly the same perfor-
mance of code A and the advantage of having much less
memory limitations. In some sense, we were expecting
a better performance of this code since here we do not
need to read the disorder potential from global memory
at each step; but it seems that the PHILOX RNG call
for each thread is as time consuming as a global memory
access.

Let us remark that, while the CPU code computing
time scales with L® with o ~ 1, as far as we have increase
the system size all GPU codes versions are still scaling
with o < 1, thus giving greater speedups as we increase
the system size. Somehow, as we saturates more and
more the GPU, massively parallelism gives back us better
and better performance.
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