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We investigate slow nonequilibrium dynamical processes in a two-dimensional q-state Potts model with both
ferromagnetic and ±J couplings. Dynamical properties are characterized by means of the mean-flipping time
distribution. This quantity is known for clearly unveiling dynamical heterogeneities. Using a two-times protocol
we characterize the different time scales observed and relate them to growth processes occurring in the system.
In particular we target the possible relation between the different time scales and the spatial heterogeneities
originated in the ground-state topology, which are associated to the presence of a backbone structure. We perform
numerical simulations using an approach based on graphis processing units (GPUs) which permits us to reach
large system sizes. We present evidence supporting both the idea of a growing process in the preasymptotic
regime of the glassy phases and the existence of a backbone structure behind this process.
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I. INTRODUCTION

It has became clear during the past few years that when
studying the general class of systems with slow dynamics,
the heterogeneous character of both spatial and dynamical
properties plays a fundamental role [1–3]. For instance, the in-
creasing interest in the heterogeneous behavior of glasses and
related complex systems during the past decade is concomitant
with the fact that its understanding is of great significance for
a complete comprehension of the glass transition problem.
In this direction, both dynamical and spatial heterogeneities
have been studied in several systems such as colloids [4–9],
granular matter [10–17], and structural [18–22] and spin
glasses [23–28].

An important question concerns the key relation between
dynamical and spatial heterogeneities. Studies in structural
glasses revealed that a relation clearly exists, and much effort
has been devoted to identify the involved mechanisms that
characterize it. In contrast, spin glasses have shown to be more
elusive regarding possible links between spatial and dynamical
heterogeneities. It has recently been shown that a direct
connection between dynamical and spatial heterogeneities is
present in the ±J Edwards-Anderson (EA) model [29], in both
two and three dimensions [30–33].

Dynamical heterogeneities in the low-temperature dynam-
ics of spin-glass models can be characterized through the
mean flipping-time distribution (MFTD) [30], which gives
information on the amount of spin-flipping events within
a given time window. For the two-dimensional ±J EA
model, where a spin-glass phase does not exist (Tg = 0)
but preasymptotic slow dynamics can be observed at low
temperatures, it has been shown that this distribution develops
two characteristic peaks when the temperature is decreased
[31]. There is a first temperature-independent peak at short
time scales characterizing fast degrees of freedom, and a
second peak at large time scales which is thermally activated
and is related to the slow degrees of freedom. This strong
dynamical heterogeneity has been related to the underlying
spatial heterogeneities given by the backbone structure of
the model [31,32]. The backbone structure is a constrained

structure fully characterized by the topological properties
of the ground state. In particular, for the ±JEA model, an
analysis of the degenerate configurations of the ground state
reveals different sets of spins: on the one hand, solidary spins
which form a ferromagnetic-like state and, on the other hand,
nonsolidary spins which can be seen as paramagnetic-like.
This property naturally links to the information obtained
through the MFTD: nonsolidary (paramagnetic-like) and
solidary (ferromagnetic-like) spins can be recast as responsible
of the fast and slow degrees of freedom, respectively.

The fact that solidary spins have a ferromagnetic-like
character has been reinforced by information obtained with
the three-dimensional ±J EA model. In this case there exists
a spin-glass phase at low temperatures (below Tg = 1.12
[34]), and again the strong dynamical heterogeneities observed
in the MFTD can be directly related to the backbone structure
obtained using ground-state information [33]. More impor-
tantly, it has been shown that following only the set of solidary
spins a domain growth process can be identified [33]. The
observed domain growth dynamics intuitively suggests the
idea of a characteristic growing length in the system.

The key obstacle in these studies concerns the identification
of the backbone structure, which is limited by the difficulty in
properly identifying ground-state configurations. Given the
high degeneracy of the ground state of the ±J EA model, this
sets a finite size constraint, and thus only systems with very
small sizes can be resolved. At the same time, the definition of
the backbone structure for the ±J EA model is based on the
degeneracy of the ground state and on the Ising character of the
spin variable. A generalization to systems with only a simple
degenerated ground state (i.e., with up-down symmetry), such
as the Gaussian model, is far from being straightforward
[35,36]. The generalization to non-Ising spin systems, such
as XY or Potts models, is also an important open issue.

In this work, in order to gain insight into the ingredients
which should be taken into account for a generalization of
the definition of the backbone structure, we first analyze the
relation between dynamical and spatial heterogeneities in the
two-dimensional Potts model with ferromagnetic couplings.
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This model appears as a good candidate: It has a ground
state with a very low degeneracy with only q ground-state
configurations, and it also has a very rich low-temperature
dynamics with many qualitatively different regimes [37,38].
Furthermore, new numerical computation platforms allow for
large system sizes to be reached, reducing finite size effects
and allowing for very long time regimes [39]. Moreover, we
extend our analysis and consider a frustrated version of the
Potts model, the ±J Potts model in two dimensions, which
can be regarded as a generalization of the ±J EA model to q

available states for each spin. Our analysis reveals evidence of
the presence of a backbone structure in this model.

The outline of the paper is as follows. In Sec. II we define
the models we are interested in, i.e., the Potts model with
ferromagnetic and ±J couplings. We also define the MFTD
used in this work to characterize dynamical heterogeneities and
give detailed information on numerical implementations based
on graphics processing units. Then, in Sec. III, studying the
Potts model with q = 9 and ferromagnetic couplings, we show
that the MFTD is directly related to the underlying coarsening
process. Section IV is devoted to the two-dimensional ±J

EA model, where we show that the MFTD suggests the
presence of a domain growth process even in the preasymptotic
low-temperature regime (T > Tg = 0). Finally, in Sec. V we
analyze the ±J Potts model for different values of q and
present results that reveal the presence of a backbone structure
in this case. Section VI is devoted to a discussion of the
presented results.

II. MODELS AND GPU-BASED NUMERICAL
IMPLEMENTATION

A. The Potts model

The Hamiltonian for the q-state Potts model is [40]

H = −J
∑

(ij )

δ(si,sj ), (1)

where J > 0, si = 1,2, . . . ,q, the sum runs over pairs of
nearest-neighbors sites on the square lattice of linear dimen-
sion L and N = L2 sites, and δ(si,sj ) is the Kronecker delta
function.1 This Hamiltonian favors ferromagnetic states with
two neighbors minimizing its energy when their spin variables
si are in the same state si = sj , the energy of the pair being
−J . The energy of a frustrated bond, i.e., si �= sj , is always
zero and therefore the energy of the first excitation over the
ground state is 4J . The transition between the paramagnetic
high-temperature state and the ferromagnetic low-temperature
state, in two dimensions, is a second order transition for q � 4
and a first order transition for q > 4 [40]. The transition
temperature in the square lattice is exactly known and is given
by Tc = J/ ln(1 + √

q).
Recently it has been shown that the dynamical behavior at

low temperatures presents a rich variety of regimes [37], which

1Notice that in order to directly compare with the standard Ising
Hamiltonian H = −J Ising

∑
nn σiσj , with σi = ±1 states, energy and

temperature scales should be converted using J = 2J Ising. The same
applies for the relation between the ±J Potts model and the Edwards-
Anderson model.

can be ordered in a temperature scale. These regimes can be
observed after a sudden quench from the high-temperature
paramagnetic state (typically a fully disordered state cor-
responding to T = ∞) to different working temperatures
T < Tc. If the working temperature is below but close to Tc

the dynamics is governed by nucleation events, just up to
Tn < Tc. Below Tn and above a temperature Tco coarsening
phenomena rule the dynamics, signaled by a power-law
decaying energy relaxation. Below Tco, blocked states (stripes
or honeycomb-like configurations) preempt fully development
of coarsening dynamics. This regime is therefore characterized
by coarsening at intermediate stages of the dynamics and
blocked states at late stages, which when occurring dominate
the relaxation process. For q > 4, at smaller temperatures
(below some temperature Tg) the coarsening relaxation is
interrupted by a so-called glassy state [37,41–43]. This glassy
regime is characterized by dynamical frustration in such a
way that the infinite-time and zero-temperature limit state
has an excess energy with respect to the ground state. At
finite temperature when exiting from the glassy state the
system can get stuck again in a blocked state. So below Tg

glassy and blocked states govern the dynamics. The relative
range of the observed dynamical regimes depends on q. For
example, for q = 9 one has that the critical temperature is Tc =
0.72134752J , the nucleation temperature is Tn ≈ 0.718J ≈
0.995Tc, the coarsening temperature is Tco ≈ 0.6J ≈ 0.832Tc,
and the glass temperature is Tg ≈ 0.2J ≈ 0.277Tc [37].

B. The ±J Potts model

In the case of the ±J Potts model we use the following
Hamiltonian:

H = −
∑

(ij )

{δ(Jij ,1)δ(si,sj ) + δ(Jij , − 1)[1 − δ(si,sj )]},

(2)
where the Jij are 1 or −1 with equal probability; Jij = 1
favors a ferromagnetic state (as in the nondisordered case),
while J = −1 favors unequal neighbor states (si �= sj ). In
this model the ground state is multiply degenerated with
the number of configurations exponentially growing with
the system size. Mean field studies suggest that this model
develops ferromagnetic order at finite temperatures [44].
However, as discussed in Ref. [45], there is no evidence for
a ferromagnetic phase in finite dimensional models. Although
in three dimensions this system has a low-temperature spin-
glass phase, with a glass transition temperature decreasing
with increasing q [45,46], the two-dimensional counterpart
has Tg = 0 and no spin-glass phase for all q (as is the
case for the two-dimensional ±J EA model). Nevertheless,
in two dimensions, the low-temperature dynamics becomes
extremely slow when decreasing the temperature and has some
characteristics similar to a true spin-glass phase. This is the
slow preasymptotic dynamical regime we will be interested
in when analyzing the two-dimensional ±J Potts model in
Secs. IV and V.

C. Quantities of interest and numerical implementation

We use a Monte Carlo dynamical approach with Metropolis
transition rates. The same simulation protocol is used for the
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Potts models with ferromagnetic and ±J couplings. Starting
from a completely disordered state (infinite temperature) we
quench the system to a fixed working temperature T at time
t = 0. The key characterization tool we use is the MFTD.
It measures the distribution of time scales associated to
flipping events in the system, and it has proven to be a good
quantity to expose time scale separation and thus dynamical
heterogeneities. We measure the number of flips NF done by
every spin between any two of the possible q states in a time
window �t = t − tw, where the waiting time tw corresponds
to the time elapsed from the quench done at t = 0. The mean
flipping time formally depends on both t and tw and is simply
defined as τ = �t/NF . From this quantity we construct the
MFTD P (τ ), which is typically shown as P (log10 τ ) due to
its broadness. For clarity, the time evolution of the MFTD is
followed using �t = tw. Results for other values of �t and tw
are qualitatively similar.

In the last few years the use of graphics processing units
(GPUs) to accelerate simulations has burst out in many
areas of physics including fluid models, gravitation, and
superconductivity [47–49]. In particular, in statistical physics
many works have been devoted to report implementations
of spin models on GPU architectures (see Refs. [50,51] and
references therein). These recent reports alert us about the
tremendous benefit of working with GPU’s implementations,
which reduce significantly the simulation times. For our
numerical simulations in the present work, we use GPU-based
parallel implementations of the Potts models. Among other
benefits, the GPU implementation of these models allowed
us to work with system sizes up to N = 8192 × 8192 for
the ferromagnetic model, and up to N = 16 384 × 16 384 for
the ±J Potts model. Averages were taken over m thermal
realizations for the ferromagnetic case and over M disorder
realizations for the ±J Potts case. Details on the numerical im-
plementation of the Potts model with ferromagnetic couplings
can be found in Ref. [39]. For further technical details see the
Appendix.2

III. POTTS MODEL WITH q = 9

In this section we will analyze the MFTD for the q = 9 Potts
model for different dynamical regimes. When lowering the
temperature below and close to Tc the system rapidly passes the
nucleation regime and enters the coarsening regime since Tn ≈
0.995Tc. This can be shown by the evolution of the relaxation
function defined as the normalized excess of energy

φE(t) = e(t) − e(∞)

e(0) − e(∞)
, (3)

where e(t) = 〈H 〉/N is the average energy per spin and
e(∞) is the equilibrium energy of the system. Since this
quantity relies on the value of e(∞) it is very difficult to
obtain it for glassy systems, due to extremely long relaxation
times. For this reason we have analyzed φE only for the

2The present implementation of the ±J Potts model is available
under GNU GPL 3.0 license at https://bitbucket.org/ezeferrero/potts-
glass.
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FIG. 1. (Color online) (a) Relaxation of the excess energy for
different temperatures for the q = 9 Potts model. (b) Dependence
with temperature of the MFTD for the q = 9 Potts model (colors
and symbols for each temperature are conserved from the panel
above). All the curves correspond to �t = tw = 4 × 103, L = 8192,
m = 100.

characterization of the different dynamical regimes of the
Potts model [37]. Given a quench to a working temperature
T < Tc, the relaxation function shows, after a short transient,
an evolution depending on temperature. In a wide temperature
range 0.2Tc � T � 0.98Tc one observes a power-law decay of
the relaxation function φE ∼ t−1/2, as shown in Fig. 1(a). This
is consistent with a coarsening dynamics where the size of the
domains are growing as � ∼ t1/2 (note that we are not reaching
late times when � ∼ L and blocked states arise with a finite
probability for T < Tco and start to dominate the relaxation).
Subsequently, the appearance of a glassy state slows down the
dynamics, appreciated as a plateau in the relaxation function,
which finally saturates in a finite value when T → 0.

The MFTD is measured in the coarsening regime by
choosing �t = tw = 4 × 103. At temperatures close enough to
Tc the MFTD is expected to be characterized by a single peak at
small time scales, typical of fast flipping events. Nevertheless,
even at a temperature T = 0.999Tc the MFTD shows a
shoulder at larger time scales. From this shoulder, a well-
defined second peak develops when lowering the temperature
inside the coarsening regime, as shown in Fig. 1(b). The
interpretation of the first and second peak in the MFTD when
the system is in the coarsening regime is clear: While the
second peak is related to thermal excitations within one of the
q-states ferromagnetic domains, the first peak is associated to
the fast flipping events of spins belonging to domain walls
between the different growing domains [33].

It is also possible to follow the time evolution of the MFTD
at a given fixed temperature by changing tw, using �t = tw.
Figure 2 shows the MFTD for different waiting times tw at
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FIG. 2. (Color online) Evolution with the waiting time of the
MFTD for the q = 9 Potts model at T = 0.98Tc (within the coarsen-
ing regime). The time evolution is followed using a two-times protocol
with �t = tw . Averages were taken with L = 8192, m = 100. The
inset shows the evolution of the relaxation function φE(t) at this
temperature. The vertical dashed line indicates approximately the
beginning of the power law decay corresponding to the coarsening
regime (t ≈ 4 × 103).

T = 0.98Tc, which corresponds to the coarsening regime. As
shown by the evolution of the relaxation function in the inset,
the power-law decay begins at a time t ≈ 4 × 103. It is worth
stressing that the evolution from a MFTD with a single peak
into a bimodal distribution starts manifesting before this time;
nevertheless it is still clearly related to the coarsening process.
The growth of the second peak with time indicates that the
number of spins within ferromagnetic domains is increasing.
Not only is the first peak decreasing, but it is also moving to the
right, indicating that flipping transitions are becoming harder
for those spins participating in domain walls. It is also worth
stressing that spins which belong to a given ferromagnetic
domain can eventually be part of a domain wall in a subsequent
time; i.e., a given spin can contribute to either of the two
peaks of the MFTD distribution while the coarsening process
is developing.

When the temperature is lowered in the q = 9 Potts model,
the dynamics becomes slower as the different temperature
scales are overpassed. In this case a glassy state starts
dominating the dynamics, and the relaxation function is
characterized by a plateau [37] (see Fig. 1). Due to the
presence of this plateau, the second peak moves to larger
flipping time values and eventually becomes difficult to
characterize.

We have shown in this section that the MFTD can be related
to the domain growth process in the coarsening regime of
the q = 9 Potts model. In order to extend this analysis to a
disordered model, and since it has been recently suggested
that a coarsening process takes place within the backbone of
the three-dimensional ±J EA model [33], in the following
sections we will consider in our analysis the ±J Potts model.
As a starting point we will consider the ±J q = 2 case, i.e.,
the ±J EA model. Then we will also consider larger values
of q which show the importance of considering the backbone
structure in Potts models.

IV. ±J EA MODEL

In this section we move to the study of disordered systems,
first analyzing the ±J EA model. We first briefly discuss the
results already found for the ±J EA model in relation with
dynamical heterogeneities and the backbone structure, which
is defined based on information given by the topology of
the ground state [35]. Concretely, those bonds which do not
change their state, satisfied or frustrated, in all configurations
of the multiply degenerated ground state of the model
compose the rigid lattice. In addition, those spins connected
through the rigid lattice are labeled as solidary spins, since
they do maintain their relative orientation in all ground-state
configurations. The rest of the spins are labeled as nonsolidary
spins. Both the rigid lattice and the set of solidary spins form
the backbone structure of the system.

In Ref. [33] the three-dimensional ±J EA model was
studied, and slow and fast time scales were related to the spatial
heterogeneities given by the backbone structure. Evidence
was presented for a growing process taking place inside
the backbone structure, where spins can be ordered in a
ferromagnetic-like state. In this case the backbone structure
has a finite component percolating all over the sample where
ferromagnetic-like correlations can grow [35]. The situation
is different in the two-dimensional ±J EA model [31,35],
where the backbone structure is fragmented and does not
percolate through the sample. However, it has been shown that
the distribution of islands of the backbone structure is very
close to the one corresponding to the percolation threshold
[35]. If one considers the possibility of growing ferromagnetic-
like correlations inside each fragment of the backbone struc-
ture in the two-dimensional case, then a growing process would
take place with a cutoff given by the nonpercolative character
of the backbone structure. In the following we further test this
idea.

First, in Fig. 3 we show the full MFTD and its separation
into the contribution from solidary and nonsolidary spins,
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FIG. 3. (Color online) MFTD for the ±J EA model (equivalently
±J Potts model with q = 2) in two dimensions for T = 0.25J and
�t = tw = 106. We show the full MFTD for L = 22 and 512 using
spin-flip dynamics with serial random updates together with the result
for L = 512 using the parallel dynamics described in Sec. II. The
separation of the full MFTD into the contribution from solidary spins
(ss) and nonsolidary spins (nss) is also shown for L = 22. Averages
were taken over M = 2000 samples for L = 22, M = 100 samples
for L = 512, and M = 1 sample for M = 16384.
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according to the backbone structure obtained from ground-
state information. In this case �t = tw = 106 and the tem-
perature is T = 0.25J > Tc = 0, at which the dynamics is
sufficiently slow, i.e., in the preasymptotic glassy regime. The
separation is reported for the linear size of the system L = 22,
larger than the one reported in Ref. [31]. Again this separation
perfectly accounts for the observed dynamical heterogeneities.

The numerical simulations showing the separation of the
MFTD into its contribution from solidary and nonsolidary
spins for L = 22 were performed using single spin-flip
dynamics with Metropolis transition probabilities and random
updates. Moreover, the full MFTD is compared in Fig. 3
with the one for L = 512 obtained with the same dynamical
rules, showing a considerable agreement. This indicates that
although L = 22 seems to be a rather small system size, it
already perfectly accounts for the main dynamical properties
of the system. One can also compare this result with the
one obtained using the GPU-based parallel implementation.
The MFTD for L = 512 and 16 384 (almost indistinguishable
between them) obtained with this dynamical rules are also
presented in Fig. 3, and the agreement with the serial
implementation is excellent. This validates the use of this
dynamical rules for the present dynamical studies; i.e., there
are not significant differences between serial and parallel
spin-flip updates.

Finally, we show in this section the evolution of the
contribution from solidary spins to the MFTD corresponding
to the two-dimensional ±J EA model. We show results for
T = 0.25J and in the range 103 < �t = tw < 107, where the
full MFTD remains mostly unchanged. From the evolution
of the contribution of solidary spins to the MFTD presented
in Fig. 4, it can be observed that while the second peak
remains almost unchanged, the first peak is disappearing (or
moving to the right). This can be taken as an indication of the
presence of a growing process inside the backbone structure as
previously reported for the three-dimensional case [33]. Note
also the similarities between this result and the one obtained
for the Potts model with ferromagnetic couplings in Fig. 2. The
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FIG. 4. (Color online) Evolution of the MFTD given by the
solidary spins in the two-dimensional ±J EA model. Each curve
was obtained using �t = tw . The temperature is T = 0.25J in all
cases. The arrow emphasizes how the contribution to the fast peak is
evolving with increasing tw . Averages were taken within M = 2000
samples for L = 22.

second peak of the contribution of solidary spins to the MFTD,
corresponding to slow degrees of freedom, is not evolving with
tw. Indeed, the second peak depends only on temperature and
is thermally activated [31], as further discussed below.

V. ±J POTTS MODEL

In this section we extend the study of the MFTD to the
two-dimensional ±J Potts model with different q values
using GPU-based numerical simulations. We will compare the
full MFTD for different q values and discuss its temperature
dependence. Figure 5 shows the MFTD for the ±J Potts model
with different number of available states q = 2,3,5,10 for each
spin and using T = 0.1J and �t = tw = 107. One can observe
that at this low temperature the MFTD can be decomposed on
at least two peaks, thus revealing the strong nature of the
observed heterogeneous dynamics. Comparing the curve for
q = 2 shown in this figure (T = 0.1J ) with the one showed in
Fig. 3 (T = 0.25J ), we see that the second peak is moved out
to the right due to thermal activation. However, for q = 3, 5, 9
the time scale of the second peak is within the time window.
For values of q > 2 one can envisage the presence of more
than two peaks, as is more clear for q = 10, suggesting a more
complex underlying structure.

The existence of the strong time scale separation observed
in Fig. 5 can be attributed to the presence of an underlying
backbone structure. In order to further pursue this idea we show
in Fig. 6 the temperature dependence of the MFTD for q = 5
and �t = tw = 107. The first peak characterizing fast degrees
of freedom does not change appreciably with temperature. The
second peak, related to the slow degrees of freedom, moves
to larger values of the mean flipping time scale when the
temperature is decreased. Indeed, the average position of the
second peak can be thought of as a characterization of the states
with lowest excitation energies in the system. Figure 7 shows
that the average position of the second peak, τ2, is thermally
activated for different q values (q = 2,3,5). The activation
energy is �E = 2J for q = 2 and �E = J for q > 2. This can
be understood by inspection of the Hamiltonian (2) presented
in Sec. II. While for the q = 2 case the lowest excitations
correspond to flipping one spin with only one frustrated bond,
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FIG. 5. (Color online) MFTD for the ±J Potts model with
different q states, q = 2,3,5,10, at a fixed temperature T = 0.1J .
Curves correspond to �t = tw = 107, L = 4096, and M = 10.
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Curves correspond to L = 2048, M = 10.

for q > 2 the lowest excitation is given by flipping one spin
with two frustrated bonds. In both cases the final excited state
has three frustrated bonds. This therefore clearly shows that the
structure around the second peak is thermally activated, which
we take as another indication of a growing process inside the
backbone structure.

The dynamical properties described here for the ±J Potts
model implicitly point to the presence of a set of strongly
correlated spins, reminiscent of the set of solidary spins in
the ±J EA model. The presented evidence therefore suggest
the existence of a backbone structure in the ±J Potts model.
This backbone structure would be composed of solidary spins
of a ferromagnetic-like character and nonsolidary spins with
paramagnetic-like features. Interestingly, although we have
presented evidence for the presence of a backbone structure in
the ±J Potts model, it is not straightforward to compute it from
ground-state information. In fact, due to the internal variable q

in each spin, the protocol to obtain the backbone structure used
for q = 2 should be generalized. This task, which is clearly
far from trivial, will be left for future work.
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FIG. 7. (Color online) Arrhenius plot for the characteristic time
scale of the second peak (τ2) of the MFTD for q = 2,3,5 (�t = tw =
107). The dashed lines are linear fits of the data (symbols), giving
slopes of 1.99 ± 0.01 for the q = 2 case and 0.99 ± 0.01 for q = 3
and 5 cases.

VI. DISCUSSIONS AND CONCLUDING REMARKS

In the present work we have studied the dynamical
heterogeneities characterized through the MFTD in the Potts
model with both ferromagnetic and ±J couplings. We have
also devoted our analysis to correlate these dynamical hetero-
geneities with the presence of a backbone structure.

First, we showed how the MFTD accounts for the different
dynamical regimes observed in the q = 9 Potts model. In
particular, by analyzing the system in the coarsening regime
one can give support to the idea that the temperature and time
evolution of the two peaks in the MFTD are intimately related
to the coarsening of different domains.

We showed that for the two-dimensional ±J EA model
(equivalently the ±J Potts model with q = 2), where the
backbone structure is well characterized, the time evolution
of the MFTD strongly suggests that a growth process is taking
place within the preasymptotic regime. We have also analyzed
the MFTD for the ±J Potts model with q > 2. We have
shown numerical evidence suggesting that this model also has
an underlying backbone structure. In particular the thermal
activation of the time scale related to the second peak indicates
that a backbone structure can be the key ingredient dominating
the glassy dynamics. As a by-product, we have also shown
the equivalence between serial and parallel implementations
of the numerical simulations, a fact that can not be assumed
a priori.

Since we have presented numerical evidence for the
plausibility of the existence of a backbone structure in the
±J Potts model, the question of how to identify this backbone
structure naturally arises. The most trivial test one can think of
is to use the backbone structure obtained for q = 2 to analyze
the dynamical properties for q > 2. In this way one can test
whether the spin degrees of freedom are relevant or not in
defining the backbone. We have run such test and we observed
that the rigid lattice defined in the two-dimensional ±J EA
model does not give a proper time scale separation for q > 2.
From this simple test we can assure that the backbone structure
is a nontrivial combination of the spin degrees of freedom and
the couplings distribution.
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APPENDIX: GPU-BASED NUMERICAL
IMPLEMENTATION

For our numerical simulations we use GPU-based parallel
implementations of the Potts models. In particular a checker-
board scheme with parallel spin-flip updates is used. It is worth
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stressing that although equilibrium measures are accepted as
independent of the particular Monte Carlo implementation,
this is not usually the case for the dynamical properties of
a model [52]. In principle, a parallel implementation of a
stochastic dynamics could introduce undesirable correlations,
and thus should be tested beforehand. Here we have checked
that our GPU-based massively parallel implementation is com-
pletely compatible with the usual serial CPU-based dynamics
(see Sec. IV) where spins are chosen at random to attempt
each update, and this was done for a totally out-of-equilibrium
quantity such as the MFTD.

On the base of the code presented in Ref. [39] some modifi-
cations were implemented to allow for the construction of the
MFTD histograms and introduce competitive interactions in
the ±J Potts model. For the nondisordered case we have just
added a few lines to the update routine to keep count of the
number of flips of each spin in the time window we are inter-
ested in, and a routine to calculate the P (τ ) histograms using
that information. Since an additional write operation to an array
in global memory is necessary at each local update step, we get
a slowdown of 5%–10% with respect to the reference code, at
an average spin-flip time of 0.2 ns. Is it worth stressing that we
are still simulating at more than 120× with respect to a CPU
implementation.

For the ±J Potts model the extension is straightforward.
In a naive implementation, we have stored the Jij bonds in

an array in global memory. Every spin has direct access to
the value of the four bonds shared with its nearest neighbors.
Even more, the information of the bonds is duplicated in global
memory. This array is built in such a way that neighbors threads
can copy down the values of their bonds to register accessing in
a coalesced manner. This implementation suffers a slowdown
of 16% with respect to the nondisorder case but still has an
acceptable performance (0.22 ns per spin flip on a GTX 480)3

for a spin-glass code as compared with other implementations
of realistic system sizes [53]. As compared with the C code
used for the serial numerical simulations of the ±J EA model,
the present GPU-based implementation represents a speed up
of 60×. In both cases, to calculate the MFTD a routine to
build the histograms is implemented using atomic operations
on shared memory.

The implementation of a random number generator in GPU
should be carefully chosen (for a recent review see Ref. [54])
As in Ref. [39] we have used the Multiply-With-Carry
random number generator which allows for the simultaneous
generation and use of several independent random sequences
and has a good trade-out of performance and statistical quality,
at least for spin systems implementations.

3Compiler nvcc 4.1 V0.2.1221 options -O3 -arch=sm_20–
use_fast_math.
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(2004).
[43] M. J. de Oliveira, Comput. Phys. Commun. 180, 480 (2009).
[44] E. D. Santis, G. Parisi, and F. Ritort, J. Phys. A 28, 3025

(1995).
[45] A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero, M. Guidetti,

A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor,
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