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We implemented a GPU-based parallel code to perform Monte Carlo simulations of the two-dimensional
q-state Potts model. The algorithm is based on a checkerboard update scheme and assigns independent
random number generators to each thread. The implementation allows to simulate systems up to ∼109

spins with an average time per spin flip of 0.147 ns on the fastest GPU card tested, representing a
speedup up to 155×, compared with an optimized serial code running on a high-end CPU.
The possibility of performing high speed simulations at large enough system sizes allowed us to provide a
positive numerical evidence about the existence of metastability on very large systems based on Binder’s
criterion, namely, on the existence or not of specific heat singularities at spinodal temperatures different
of the transition one.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The tremendous advances allowed by the usage of numerical
simulations in the last decades have promoted these techniques to
the status of indispensable tools in modern Statistical Mechanics
research. Notwithstanding, many important theoretical problems
in the field still remain difficult to handle due to limitations in
the available computational capabilities. Among many others, typi-
cal issues that challenge the numerical treatment concern systems
with slow dynamics (i.e., dynamical processes that involve very
different time scales) and/or strong finite size effect, which require
fast simulations of a very large number of particles. Some typical
examples we may cite are spin glass transitions [1], glassy behav-
ior [2,3] and grain growth [4]. In such kind of problems the state
of the art is usually launched by novel numerical approaches or
extensive computer simulations. In this sense, the advent of mas-
sive parallel computing continuously opens new possibilities but,
at the same time, creates a demand for new improved algorithms.
In particular, the usage of GPU cards (short for Graphics Processing
Units) as parallel processing devices is emerging as a powerful tool
for numerical simulations in Statistical Mechanics systems [5–10],
as well as in other areas of physics [11–13].

These GPUs have a Toolkit that abstracts the end-user from
many low-level implementation details, yet all the typical prob-
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lems of concurrency exist and they are magnified by the massive
amount of (virtual) threads it is capable to handle. An extremely
fine grained concurrency is possible and advised thanks to the
Single Instruction Multiple Thread (SIMT) model. Therefore, any
non-trivially independent problem requires a correct concurrency
control (synchronization), and the lack of it hinders correctness in
a much dramatic way than current 4 or 8-way multicore CPU sys-
tems. The other challenge apart from correctness is performance,
and here is where the algorithm design practice excels. Taking
into account internal memory structure, memory/computation ra-
tio, thread division into blocks and thread internal state size, can
boost the algorithm performance ten times from a trivial imple-
mentation [14]. It is also customary to give an approximation of
the speedup obtained from a CPU to GPU implementation in terms
of “N×”, even though, as we discuss later, this number will al-
ways depend on the corresponding efforts devoted to optimally
programming for each architecture.

In this work we focus on GPU-based Statistical Mechanics simu-
lations of lattice spin systems. In particular, we study the metasta-
bility problem in the ferromagnetic q-state Potts model [15] in
two dimensions when q > 4. While this phenomenon is clearly ob-
served in finite size systems, its persistence in the thermodynamics
limit is still an unsolved problem and subject of debate [16–20]. In
an earlier work, Binder proposed a numerical criterion to deter-
mine whether metastability remains in the thermodynamic limit
or not, based on the scaling properties of the average energy in
the vicinity of the transition temperature [16]. However, the nar-
row range of temperature values of the metastable region requires
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high precision calculations for the criterion to work. Hence, to re-
duce finite size bias and statistical errors down to an appropriated
level, large enough system sizes are needed. The computation ca-
pabilities required to carry out such calculations in a reasonable
time were unavailable until recently.

We developed an optimized algorithm to perform Monte Carlo
numerical simulations of the q-state Potts model on GPU cards.
This algorithm allowed us to simulate systems up to N = 32768 ×
32768 ∼ 1.073 × 109 spins with a lower bound time of 0.147 ns
per spin flip using an NVIDIA GTX 480 Fermi card, and in terms
of speedup, we obtained 155× from an optimized CPU sequential
version running on an Intel Core 2 Duo E8400 at 3.0 GHz.

What is remarkable about the speedup is that it allowed us to
explore bigger systems, simulate more iterations, explore parame-
ters in a finer way, and all of it at a relatively small cost in terms
of time, hardware and coding effort. With this extremely well per-
forming algorithm we obtained a positive numerical evidence of
the persistence of metastability in the thermodynamic limit for
q > 4, according to Binder’s criterion.

The paper is structured as follows. In Section 2 we briefly re-
view the main properties of the Potts model and the particular
physical problem we are interested in. In Section 3 we introduce
the simulation algorithm and in Section 4 we compare the pre-
dictions of our numerical simulations against some known equi-
librium properties of the model to validate the code. In Section 5
we check the performance of the code. In Section 6 we present
our numerical results concerning the metastability problem. Some
discussions and conclusions are presented in Section 7.

2. The q-state Potts model

2.1. The model

The q-state Potts model [15] without external fields is defined
by the Hamiltonian

H = − J
∑
〈i, j〉

δ(si, s j) (1)

where si = 1,2, . . . ,q, δ(si, s j) is the Kronecker delta and the sum
runs over all nearest neighbors pairs of spins in a Bravais lattice
with N sites. Being a generalization of the Ising model (q = 2), this
model displays a richer behavior than the former. One of the main
interests is that the two-dimensional ferromagnetic version ( J > 0)
exhibits a first order phase transition at some finite temperature
when q > 4, while for q � 4 the transition is continuous [15].
Hence, it has become a paradigmatic model in the study of phase
transitions and their associated dynamics, like for instance, domain
growth kinetics [21–25] and nucleation as an equilibration mecha-
nism [17,26,27].

Some equilibrium properties of the two-dimensional model are
known exactly, which allows numerical algorithms testing. We list
here some of them that are used for comparison with the nu-
merical results in the present work. For instance, the transition
temperature for the square lattice in the thermodynamic limit is
given by [28]

kB Tc

J
= 1

ln(1 + √
q)

(2)

where kB is the Boltzmann constant. Hereafter we will choose
kB/ J = 1. Considering the energy per spin e = 〈H〉/N , in the ther-
modynamic limit the latent heat for q > 4 is [28]

ed − eo = 2

(
1 + 1√

2

)
tanh

Θ

2

∞∏
(tanhnΘ)2 (3)
n=1
where Θ = arccos
√

q/2 and

ed = lim
N→∞

1

N
lim

T →T +
c

〈H〉, (4)

eo = lim
N→∞

1

N
lim

T →T −
c

〈H〉. (5)

Also

ed + eo = −2(1 + 1/
√

q) (6)

from which the individual values of ed and eo can be obtained [29].
The order parameter is defined as

m = q(Nmax/N − 1)

q − 1
(7)

where Nmax = max(N1, N2, . . . , Nq), being Ni the number of spins
in state i. At the transition the jump in the order parameter (for
q > 4) is given by [30]

�m = 1 − q−1 − 3q−2 − 9q−3 − 27q−4 − · · · . (8)

2.2. Metastability

The problem of metastability in the infinite size q-state Potts
model (for q > 4) is an old standing problem in statistical mechan-
ics [16,31,24,32,18,20]. It has also kept the attention of the Quan-
tum Chromodynamics’ (QCD) community for many years [33,34,
31,19,35], because it has some characteristics in common with the
deconfining (temperature driven) phase transition in heavy quarks.

Metastability is a verified fact in a finite system. It is known [17,
24,18] that below but close to Tc the system quickly relaxes to a
disordered (paramagnetic) metastable state, with a life time that
diverges as the quench temperature T approaches Tc (see for ex-
ample Fig. 4 in Ref. [20]). This state is indistinguishable from one
in equilibrium in the sense of local dynamics, namely, two times
correlations depend only on the difference of times, while one
time averages are stationary [18].

Nevertheless, the existence of metastability in the thermody-
namic limit is still an open problem [18]. In Ref. [16] Binder stud-
ied static and dynamic critical behavior of the model (1) for q =
3,4,5,6. Using standard Monte Carlo procedures he obtained good
agreement with exact results for energy and free energy at the
critical point and critical exponents estimates for q = 3 in agree-
ment with high-temperature series extrapolations and real space
renormalization-group methods. When analyzing the q = 5 and 6
cases he realized that the transition is, in fact, a very weak first or-
der transition, where pronounced “pseudocritical” phenomena oc-
cur. He studied system sizes from N = 16×16 up to N = 200×200,
and observation times up to 104MCS (a Monte Carlo Step MCS is
defined as a complete cycle of N spin update trials, according to
the Metropolis algorithm). Within his analysis he was unable to
distinguish between two different scenarios for the transition at
q � 5 due to finite size effects taking place at the simulations. He
proposed two self-avoiding possible scenarios for the transition.
In the first one the energy per spin reaches the transition tem-
perature with a finite slope both coming from higher and lower
temperatures, thus projecting metastable branches at both sides of
the transition that end at temperatures T +

sp and T −
sp both different

from Tc . In the second scenario, the energy reaches Tc with an in-
finite slope which would imply a first order phase transition with
a true divergence of the specific heat at Tc .

On the other hand, other approaches based on different defini-
tions of the spinodal temperatures predict, either the convergence
of the finite size spinodal temperatures to Tc [17,19] or a conver-
gence to limit values different from but closely located to Tc [20].
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3. Optimized GPU-based Monte Carlo algorithm for the q-state
Potts model

We developed a GPU-based code to simulate the two-dimen-
sional Potts model, using classical Metropolis dynamics on square
lattices of size N = L × L sites with periodic boundary conditions.
For the spin update we partition lattice sites in two sets, the
whites and the blacks, laid out in a framed checkerboard pattern
in order to update in a completely asynchronous way all the white
cells first and then all the black ones (given that the interactions
are confined to nearest neighbors). This technique is also know as
the Red–Black Gauss–Seidel [36]. We analyzed equilibrium states
of systems ranging from N = 16 × 16 to N = 32 768 × 32 768
(215 × 215 	 1.073 × 109 spins).

The typical simulation protocol is the following. Starting from
an initial ordered state (si = 1 ∀i) we fix the temperature to
T = Tmin and run ttran to attain equilibrium, then we run tmax tak-
ing one measure each δt steps to perform averages. After that, we
keep the last configuration of the system and use it as the ini-
tial state for the next temperature, T = Tmin + δT . This process is
repeated until some maximum temperature Tmax is reached. We
repeat the whole loop for several samples to average over differ-
ent realizations of the thermal noise. In a similar way we perform
equilibrium measurements going from Tmax to Tmin starting ini-
tially from a completely random state.

3.1. GPU: device architecture and CUDA programming generalities

In 2006, NVIDIA decided to take a new route in GPU design
and launched the G80 graphics processing unit, deviating from the
standard pipeline design of previous generations and transforming
the GPU in an almost general purpose computing unit. Although
this decision could have been driven by the gaming community
asking for more frames per second, NVIDIA took advantage of his
General Purpose Graphics Processing Units (GPGPU), and in 2007
they launched the CUDA SDK, a software development kit tailored
to program its G80 using C language plus minor extensions. The
G80 hardware and the CUDA compiler quickly proved to have an
extremely good relation in terms of GFLOPS per watt and GFLOPS
per dollar with respect to the CPU alternatives in the application
field of numerical algorithms.

The architecture has evolved two generations, GT200 in 2008
and 2009, and the GF100 in 2010, also known as the Fermi ar-
chitecture. All of them share the same Single Instruction Multiple
Thread (SIMT) concurrency paradigm in order to exploit the high
parallelism (up to 480 computing cores) and the high memory
bandwidth (up to 177 GBps). The SIMT model is a convenient
abstraction that lies in the middle of the SIMD (Single Instruc-
tion Multiple Data) and MIMD (Multiple Instruction Multiple Data),
where the first reigned in the 80’s with the vector computers, and
the later is the commonplace of almost every computing device
nowadays, from cellphones to supercomputers.

Using SIMT paradigm, the parallel algorithm development
changes greatly since it is possible to code in a one-thread-per-
cell fashion. The thread creation, switching and destruction have
such a low performance impact that doing a matrix scaling re-
duces to launch one kernel per matrix cell, even if the matrix is
32 768 × 32 768 of single precision floating point numbers sum-
ming up 1 GThread all proceeding in parallel. In fact, for the
implementation, the more threads the better, since the high mem-
ory latency to global memory (in the order of 200 cycles) is hidden
by swapping out warps (vectors of 32 threads that execute syn-
chronously) waiting for the memory to become available.

It is important to emphasize the role of blocks in the SIMT
model. Threads are divided into blocks, where each block of
threads has two special features: a private shared memory and the
ability to barrier synchronize. Using these capabilities, the shared
memory can be used as a manually-managed cache that in many
cases greatly improves the performance.

We used the GTX 280, GTX 470 and GTX 480 boards. The rele-
vant hardware parameters for these boards are shown in Table 1.

The improvements of the Fermi architecture lay on the new
computing capabilities (improved Instruction Set Architecture –
ISA), the doubling of cores, the inclusion of L1 and L2 cache, in-
creased per-block amount of parallelism and shared memory.

As every modern computing architecture the memory wall ef-
fect has to be relieved with a hierarchy of memories that become
faster, more expensive and smaller at the top. The bottom level is
the global memory, accessible by every core and having from 1 GB
to 1.5 GB of size1 and a latency of 200 cycles. The next level is
the shared memory, that is configurable 16 KB or 48 KB per block
having a latency of only 2 cycles. At the top there are 32 K regis-
ters per block. There are also texture and constant memory, having
special addressing capabilities, but they do not bring any perfor-
mance improvement in our application. The Fermi architecture has
also incorporated ECC memory support to eventually deal with in-
ternal data corruption.

The programming side of this architecture is a “C for CUDA”,
an extension of the C Programming Language [37] that enables the
host processor to launch device kernels [38]. A kernel is a (usually
small) piece of code that is compiled by nvcc, the NVIDIA CUDA
Compiler, to the PTX assembler that the architecture is able to exe-
cute. The kernel is executed simultaneously by many threads, orga-
nized in a two-level hierarchic set of parallel instances indexed as
(grid,block) (a grid of thread blocks). Internally each grid and block
can be divided up to two dimensions for the grid and three dimen-
sions for the block, in order to establish a simple thread-to-data
mapping. Special variables store the thread position information of
block and thread identifier (bid, tid) that distinguishes the threads
executing the kernel.

It is interesting to note that although the unit of synchronous
execution is a warp of 32 threads, the threads inside a warp may
diverge in their execution paths (occurrence of bifurcations), at the
cost of having to re-execute the warp once for each choice taken.
Needless to say that in general this impacts negatively in the per-
formance and has to be avoided.

The present code is divided in two main functions: spin update
and energy and magnetization computation. The first function is
implemented in host code by the function update and this com-
prises calling the device kernel updateCUDA once updating white
cells and next updating black cells in a checkerboard scheme. The
energy and magnetization (and their related moments) summa-
rization is done by calculate that calls the kernel calcu-
lateCUDA and two more auxiliary kernels: sumupECUDA and
sumupMCUDA.

3.2. Random number generator

The Potts model simulation requires a great amount of random
numbers. Namely, each cell updating its spin needs one integer
random number in {0, . . . ,q − 1} and possibly a second one in the
real range [0,1) to decide the acceptance of the flip. Hence, a key
factor to performance is using a good parallel random number gen-
erator.

Given the great dependence in terms of time (it has to be
fast) and space (small number of per-thread variables), we find
Multiply-With-Carry (MWC) [39] ideal in both aspects. Its state is

1 These values apply to consumer graphics cards. The Tesla HPC line incorporates
up to 6 GB of memory (e.g. Tesla C2070), that is configurable to be ECC in order to
improve reliability.
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Table 1
Key features about NVIDIA GTX 280, GTX 470, and GTX 480 graphic cards.

Board model GTX 280 GTX 470 GTX 480

Available Q2 2008 Q1 2010
GPU GT200 GF100
CUDA capability 1.3 2.0

CUDA cores 240 448 480
Processor clock 1.30 GHz 1.22 GHz 1.40 GHz
Global memory 1 GB 1.25 GB 1.50 GB
Memory bandwidth 141.7 GBps 133.9 GBps 177.4 GBps

L1 cache N/A 16 KB–48 KB
L2 cache N/A 768 KB

Max # of threads per block 512 1024
Shared memory per block 16 KB 48 KB–16 KB
Max # of registers per block 16 384 32 768
only 64 bits, and obtaining a new number amounts to compute
xn+1 = (xn × a + cn) mod b, where a is the multiplier, b is the
base, and cn is the carry from previous modulus operation. We
took the implementation from the CUDAMCML package [40] that
fixes b = 232 in order to use bit masks for modulus computation.

For independent random number sequences, MWC uses differ-
ent multipliers, and they have to be good in the following sense:
a × b − 1 should be a safeprime, where p is a safeprime if both
p and (p − 1)/2 are primes. Having fixed b = 232, the process of
obtaining safe primes boils down to test for primality of two num-
bers goodmult(a) ≡ prime(a × 232 − 1)∧ prime((a × 232 − 2)/2). It is
important to remark that the nearer to 232 is a the longer the pe-
riod of the MWC (for a close to its maximum, the period is near to
264), therefore it is always advisable to start looking for goodmult
down from 232 − 1.

We limit the amount of independent random number gen-
erators (RNG) to 5122/2 = 131 072 that is slightly lower than
the 150 000 good multipliers that CUDAMCML gives in its file
safe_primes_base32.txt. The state needed comprises 12
bytes per independent RNG, totalizing 1.5 MB of global memory,
less than 0.15% of the total available in the GTX 280. We consider
this a good trade-off between independence in number generation
and memory consumption. This design decision is crucial in the
parallelization of the spin update function, as we frame the lat-
tice in rectangles of 512 × 512, to give each thread an independent
RNG.2 Moreover, this implies that the larger the lattice, the more
work will be done by a single thread.

It is important to remark we are well below the RNG cycle even
for the largest simulations.

3.3. Spin update

On top of the checkerboard division we have first to frame
the lattice in rectangles of 512 × 512 in order to use the limited
amount of independent RNG (Fig. 1, left). This implies launching
two consecutive kernels (black/white) of 512×512/2 threads, typi-
cally organized into a grid of 32×16 blocks of 16×16 threads. The
second step comprises the remapping of a two-dimensional stencil
of four points in order to save memory transfers. The row–column
pair (i, j) is mapped to (((i + j) mod 2 × L + i)/2, j), and this al-
lows to pack all white and all black cells in contiguous memory
locations improving locality and allowing wider reads of 3 consec-
utive bytes (Fig. 1, right).

We encode each spin in a byte, allowing simulations with q �
256 and L2 � available RAM. Since some extra space is needed for
the RNG state and for energy and magnetization summarization,

2 For system sizes smaller than N = 5122 we use smaller frames, and then, fewer
RNG. But 512 × 512 is the standard framing choice for most of the work.
Fig. 1. (Color online.) On the left: an 8 × 8 checkerboard framed in 4 × 4 (red mark-
ing), the cells updated by thread t0 are singled out, we also marked the north, east,
south and west neighbors of cell •. On the right: packed checkerboard showing first
half of whites, where the neighboring cells n, e, s, w are marked, also in the second
half of black cells • is singled out.

this upper bound is not reached. The biggest simulation we achieve
is L = 32 768, q = 45 for the GTX 480.

It is important to remark that shared memory is not used, since
we could not improve performance and it hindered readability of
the code. Texture memory techniques were not used for the same
reasons.

3.4. Computation of energy and magnetization

During the evolution of the system we extract periodically two
quantities: energy, Eq. (1), and magnetization, Eq. (7). The kernel
responsible for this job is calculateCUDA. It first partitions the
cells into CUDA blocks. In each block we have easy access to bar-
rier synchronization and shared memory among its threads. Each
block within its cells adds the local energies and accumulates in
a partial vector (n1,n2, . . . ,nq) the number of spins in each state.
This is performed in shared memory using atomic increments to
avoid race conditions. After that, those blocks’ results are added
up in parallel using a butterfly-like algorithm [38] by kernels
sumupECUDA and sumupMCUDA, but none of the known opti-
mizations [41] are applied, since it implies obfuscating the code
for a marginal global speedup. Previous kernels end up with up
to approximately a thousand partial energies and vectors of spin
counters, that are finally added in the CPU.

It has to be noticed that device memory consumption in this
part is linear not only in N , but also in q.

3.5. Defensive programming techniques and code availability

Writing scientific code that is maintainable, robust and repeat-
able is of utmost importance for the fields of science where com-
puter simulation and experimentation is an everyday practice [42].
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Table 2
Comparison between calculated and known exact values of eo , ed , and �m at the transition for different values of q. Results were obtained from averages over 10 samples
of linear system size L = 2048 and equilibration and measurements times of at least 5 × 105 MCS each one.

q −eo −ed �m

Exact Calculated Exact Calculated Exact Calculated

6 1.508980 . . . 1.51(2) 1.307516 . . . 1.306(1) 0.677083 . . . 0.674(2)

9 1.633167 . . . 1.6332(5) 1.033499 . . . 1.0334(5) 0.834019 . . . 0.8338(4)

15 1.765905 . . . 1.7659(2) 0.750492 . . . 0.7509(4) 0.916693 . . . 0.9167(3)

96 1.960306 . . . 1.96030(3) 0.243817 . . . 0.24382(4) 0.989247 . . . 0.98924(2)
CUDA coding in particular is hard, not only in creating the
algorithms, choosing a good block division and trying to take ad-
vantage of all its capabilities, but also, in the debugging and main-
tenance cycle. Debugging tools are evolving rapidly, for example
there is a memory debugger cuda-memcheck that is shipped
with current CUDA SDK. Nevertheless, we would rather adhere
to some passive and active security measures within our code to
make it easier to understand and modify, and at the same time, to
make it robust in the sense of no unexpected hangs, miscalcula-
tions or silent fails.

Among passive security measures, we use assertions (boolean
predicates) related to hardware limitations like the maximum of
512 threads per block. Other use of the assertions is checking for
the integer representation limitations: given the computing power
that GPGPU brings, lattices of 32 768 × 32 768 are feasible to simu-
late, and integer overflow could be a possibility, for example when
computing the total energy. Assertions were also used to enforce
preconditions on algorithm running, for example, the spin updat-
ing cannot do well if L is not multiple of the frame size. We also
check every return condition of CUDA library calls and kernels, in
order to lessen the asynchrony of error detection in CUDA. The
same practice is used in standard library calls for file handling.

Active security measures are also taken. We use tight types in
order to detect problems in compile time. We also decorate param-
eters and variable names with const modifiers where applicable.
For pointer immutable parameters we forbid the modification of
pointed data as well as the pointer itself. The scope of automatic
variables is as narrow as possible, declaring them within blocks,
in order to decrease the namespace size in every line of code. We
put in practice the simple but effective idea of using meaningful
variable names in order to improve the readability.

We also adhere to the practice of publishing the code [43] in
the line of [5,6,9], since it benefits from community debugging and
development. It can be found on [44].

4. Algorithm checking

In order to validate our CUDA code we run some typical simu-
lations to measure well established results.

First we calculate the energy per spin e and magnetization m
above and below the transition temperature, by cooling (heating)
from an initially disordered (ordered) state. The behaviors of e and
m as functions of T for different values of q are shown in Fig. 2.
From these calculations we obtain the values of the energy (ed and
eo) and magnetization jump �m at the exact transition tempera-
ture (see Section 2). Results are compared with exact values in
Table 2.

We can see a very good agreement between data and exact re-
sults. It’s worth noting that the data from Table 2 is not the result
of extrapolations of some finite size analysis, but the values from
curves in Fig. 2 at the transition itself. Since we measure one point
each �T in temperature, cooling and heating procedures won’t
necessary lead to a point measured exactly at Tc . So, we have to
interpolate points close to Tc to deduce the corresponding values
of eo , ed and mo at Tc . The differences obtained from interpolations
Fig. 2. (Color online.) Equilibrium energy per spin e and magnetization m (inset)
versus temperature for q = 9,12,15,96. Exact values at the transition point from
Eqs. (3), (6) and (8) are marked as crosses. Data comes from averages over 10 sam-
ples of linear system size L = 2048. Error bars are smaller than the symbol size.

using points separated by �T and points separated by 2 × �T de-
termine the estimated errors.

We also calculate the fourth order cumulant of the energy [45,
46]

V L = 1 − 〈H4〉
3〈H2〉2

(9)

as a function of the temperature for q = 6 and different system
sizes. As it is well known, V L is almost constant far away from
the transition temperature and exhibits a minimum at a pseudo
critical temperature

T ∗
c (L) = Tc + T 2

c ln(qe2
o/e2

d)

ed − eo

1

Ld
. (10)

In Fig. 3b we show T ∗
c (L) vs. 1/L2 for q = 6. The extrapolated value

of T ∗
c (L) for L → ∞, 0.8078 ± 0.0002 agrees with the exact value

Tc = 0.8076068 . . . within an accuracy of the 0.025%.
Let us emphasize that, as it is well known, it’s very difficult to

get good measures of cumulants with a single-spin flip MC algo-
rithm. In order to get reliable averages of the cumulant minimum
location, one should guarantee a measurement time long enough
to let the system overcome the phase separating energy barrier
back and forward several times. Moreover, the characteristic acti-
vation time to overcome the barrier increases both with q and L
(it increases exponentially with L). For instance, simulation times
of the order 107 for each temperature are needed to obtain a good
sampling for q = 6 and L = 256.

In addition, we test our code for the q = 2 (Ising) case. Fig. 4
shows the susceptibility of the order parameter calculated as

χ = N

T

[〈
m2〉 − 〈m〉2]. (11)

The extrapolated value of the pseudo critical temperature T ∗(L)

(defined as the location of the susceptibility maximum) for
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Fig. 3. (Color online.) Finite size scaling of the fourth order cumulant for q = 6. (a) V L as a function of temperature for different system sizes. Averages were taken over
several samples ranging from 300 to 400 for small system sizes down to 50 and 20 for L = 128 and L = 256. The orange line indicates the analytically predicted location of
the minimum in the thermodynamic limit. (b) Pseudo critical temperature T ∗

c vs. 1/L2. Error bars, estimated from the uncertainty when locating the minimum of V L , are
shown only when larger than the symbol size.

Fig. 4. (Color online.) Finite size scaling of the susceptibility for q = 2. Main plot: χ as a function of temperature for different system linear sizes. Averages were taken over
several samples ranging from 300 for small system sizes down to 50 and 15 for L = 1024 and L = 2048, respectively. We have used equally equilibration and measurement
times of 2 × 105MCS, measuring quantities each 10MCS, thus totalizing averages over 6 × 106 to 3 × 105 as we increase the system size. Upper inset: Maximum value of
the susceptibility peak χmax vs. L. Error bars, estimated from the uncertainty when evaluating the maximum, are smaller than the symbol size. Lower inset: Pseudo critical
temperature T ∗(L) vs. 1/L. Error bars, estimated from the uncertainty when locating the position of the maximum, are shown only when larger than the symbol size.
L → ∞, 1.1345 ± 0.0001, agrees with the exact value3 Tc(q = 2) =
1.134592 . . . within an accuracy of the 0.009%. Even more, if we
plot the maximum value of χ against the linear size L it is ex-
pected to observe a finite size scaling of the form χmax ∼ Lγ /ν

[47], where γ and ν are the exactly known critical exponents for
the 2D Ising model. We obtain such scaling with a combined expo-
nent γ /ν = 1.77 ± 0.02, in a good agreement with the exact value
γ /ν = 7/4

1 = 1.75.

5. Algorithm performance

The first step towards performance analysis is the kernel func-
tion calling breakdown. In this case, it is done using CUDA
profiling capabilities and some scripting to analyze a 2.9 GB
cuda_profile_0.log file produced after 12.6 hours of com-
putation. The parameters used for this profiling are q = 9, N =
2048×2048, Tmin = 0.721200, Tmax = 0.721347, δT = 10−5, ttran =
105MCS, tmax = 104MCS and δt = 500MCS.

3 It should be remembered that JPotts = 2 J Ising if we compare our Hamiltonian
(1) with the usual Ising Hamiltonian, thus giving a Tc(q = 2) which is a half of the
commonly appearing in Ising model works.
The profile shows that there are approximately 32 millions of
calls to updateCUDA and just a few thousands to the other three
kernels. Since the individual GPU time consumptions of each ker-
nel are comparable, the only relevant kernel to analyze is up-
dateCUDA.

To analyze the kernel updateCUDA we sweep L in the range
from 512 to 32 768 in powers of two, measuring the average ex-
ecution time of the kernel and normalizing it to nanoseconds per
spin flip.

We compare the three GPUs, using the same machine code
(Compute Capability – CC 1.3, generated by NVCC 3.2),4 and the
same video driver (driver version 260.19). We also compare the
GPUs performance with a CPU implementation. For this version,
we tried to keep the structure of the CUDA code, in order to
compare the execution of the same physical protocol on each ar-
chitecture. We replaced the calls to CUDA kernels with loops run-
ning over all the spins in the same checkerboard scheme, we used
the same MWC random number generator. We also added some
optimizations to improve the CPU performance like creating a pre-
computed table of Boltzmann weights for the spinflip acceptance

4 Using CC 2.0 ISA does not bring any performance improvement.
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Fig. 5. (Color online.) Spin flip time in nanoseconds vs. lattice size running on an
Intel Core 2 Duo E8400@3.0 GHz CPU, and running on GTX 280, GTX 470 and GTX
480 NVIDIA GPUs. Averages are performed over 400 runs for the GPUs and 60 runs
for the CPU. Error bars are smaller than symbol sizes when not showed.

for each simulated temperature, since the CPU have no mechanism
for hiding memory latency and the impact of any floating-point
unit (FPU) computation is noticeable. We run the CPU code against
a Core 2 Duo architecture (E8400 – Q1 2008) using GCC 4.4.5 with
carefully chosen optimization flags.5

We also vary q in the set {6,8,9,12,15,24,48,96,192}. We
don’t find any significant variation of the performance with q, ex-
cept in the q = 2k cases for the GTX 280, where the compiler
obtains slight performance advantages using bitwise operators for
modulus operation. The Fermi board has an improved modulus,
rendering that difference imperceptible.

The profiling measurement is done in the GPU cases using
CUDA profiling capabilities that gives very precise results, avoid-
ing any code instrumentation. For the CPU version it is necessary
to instrument the code with simple system calls to obtain the wall
time. In order to make the measurement independent of the tem-
perature range covered, given that the transition temperature (and
therefore the flip acceptance rate) changes with q, we choose a de-
terministic write, i.e. we always write the spin value irrespective if
the spin changes its state respect of its previous state or not. Writ-
ing the spin value only when it changes its state, brings a slight
performance improvement around 2% in the general case.

In Fig. 5 we can see that the curve corresponding to the CPU
implementation is flat around6 22.8 ns, showing no dependence
of the averaged spin flip time with system size. For GPU cases,
instead, we do have variations with respect to L. The slowest card
is the GTX 280, with spin flip times in the range [0.48 ns,0.54 ns]
which are 47× to 42× faster than those of the CPU code. The GTX
470 has a variation between 0.21 ns and 0.30 ns, giving a speedup
between 108× and 76×. The fastest card is the GTX 480 with spin
flip times in [0.18 ns,0.24 ns] achieving a speedup from 126× to
95×. There is also another curve corresponding to a specifically
tuned version for the GTX 480 card7 and CC 2.0, obtaining 155×
(0.147 ns) for the fastest case. It is important to notice that even

5 Compiler options -O3 -ffast-math -march=native -funroll-
loops.

6 It’s worth mentioning that in order to compare this value with CPU implemen-
tations of the Ising model (e.g., 8 ns in [10]), one should take into account that the
Potts model update routine requires an extra random number to choose where to
flip the spin. In addition, using MWC doesn’t provide the fastest execution times;
other RNGs as LCG-32 give better times but not completely reliable results [10] due
to their short period. For the sake of completeness, we report that eliminating one
random number toss and using LCG-32 instead of MWC we obtain a spin flip time
of 14.5 ns for our CPU implementation.

7 Each block is filling the maximum 1024 threads, we also disable L1 cache for
a (free) slight performance improvement: compiler options -Xptxas -dlcm=cg
-Xptxas -dlcm=cg.
when using newer CPU architectures like Nehalem (X5550 – Q1
2009) the spin flip time only drops 2 ns in the best case respect to
the Core 2 Duo, and that Intel C++ Compiler (ICC) cannot do any
better than that.

Nevertheless, it should be noted that better CPU implementa-
tions could be possible, since most appropriate implementations
for each architecture could be quite different from each other. For
example, lower times can be attained for CPU using typewriter up-
date scheme instead of a checkerboard one. For that reason, we
hold the idea that a good measure to compare performances be-
tween GPU implementations is the “time per spin flip”, and the
speedup respect to a CPU implementation is just additional illus-
trative information.

The variations for the GPU cards are due to two competing fac-
tors in the loop of the update kernel. One is strictly decreasing
with L and is related to the amount of global memory movements
per cell. Since there is one RNG for each thread, the global mem-
ory for the RNG state is retrieved one time in the beginning and
stored in the end, therefore the larger the L, this single load/store
global memory latency is distributed into more cells. The second
factor is increasing in L and is given by the inherent overhead in-
curred by a loop (comparison and branching), that for L = 32 768
amounts to 4096 repetitions.

We also frame at 256 × 256 and 1024 × 1024, obtaining a 25%
of performance penalty for the former, and a performance increase
of 2% in the later. This gives us more evidence that the framing at
512 × 512 is an appropriate trade-off between memory consump-
tion by the RNG and the speed of the code.

Although there are divergent branches inside the code, even for
deterministic cell writes (the boolean “or” operator semantics is
shortcircuted), eliminating all divergent branches doing an arith-
metic transformation does not bring any performance improve-
ment. This shows the dominance of memory requests over the in-
teger and floating point operations, and the ability of the hardware
scheduler in hiding the divergent branch performance penalty in
between the memory operations.

To our knowledge this is the first time the Potts model is im-
plemented in GPUs, so there is no direct performance compari-
son. There exist previous works that deal with similar problems
and that report performance measurements. Preis et al. [5] im-
plemented a 2D Ising model in GPUs, they reported a speedup
of 60× upon their CPU implementation using a GTX 280. Their
implementation has the disadvantage that the system size is lim-
ited by the maximum number of threads per block allowed (enforcing
L � 1024 on GT200 and L � 2048 on GF100). Later on, Block, Vir-
nau and Preis [6] simulated the 2D Ising model using multi-spin
coding techniques obtaining 0.126 ns per spin flip in a GT200 ar-
chitecture. Weigel [9,10] has also considered the 2D Ising model,
obtaining a better 0.076 ns per spin flip [48] on the same archi-
tecture, which is improved to 0.034 ns per spin flip on a Fermi
(GF100) architecture. Moreover, this was obtained with a single-
spin coded implementation; however this gain is partially due to
the use of a multi-hit technique updating up to k = 100 times a set
of cells while others remain untouched. Notwithstanding, Weigel
obtains [10] 0.13 ns per spin flip for the update without multi-hit
and multi-spin, which is comparable with the result of the multi-
spin coded version in [6]. Performance results on the 3D Ising
model are also available [5,10]. The Heisenberg spin glass model
is simulated on a GPU in Ref. [7], and for this floating point vec-
tor spin, they achieve a 0.63 ns per spin flip update on a GF100
architecture. Implementations of the Heisenberg model are also re-
ported in [10] with times per spin flip down to 0.18 ns on a Fermi
architecture, representing impressive speedups (up to 1029×). Re-
cently, a GPU parallelization for the GF200 architecture was im-
plemented in the Cellular Potts Model [49] with ∼80× speedup
respect to serial implementations.
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We also conduct end-to-end benchmarks of a small simulation
(q = 9, L = 1024, # of samples = 3, Tmin = 0.71, Tmax = 0.73,
δT = 0.002, ttran = 2000, tmax = 8000, δt = 50). We obtain 193 s
for the GTX 280 and 8115 s for the Intel Core 2 architecture, with
a global speedup of 42×, very similar to the speedup reported by
the microbenchmarks. The coincidence of microbenchmarks and
end-to-end benchmarks results reaffirms the fact that all the opti-
mization efforts should go to the update kernel updateCUDA.

6. Metastability in the q-state Potts model

Based on Binder’s criterion described in Section 2 we analyze
the existence of metastability for q > 4 as the system size in-
creases. From Fig. 2 we see that for large enough values of q the
energy branches attain the transition temperature from both sides
with a finite slope, even with a relatively poor temperature resolu-
tion. As q decreases, a closer approach to Tc is needed in order to
distinguish whether a true singularity at Tc is present or not, since
the spinodal temperatures are expected to be located very close
to [20] Tc .

A power law divergence of the specific heat at Tc would imply
the following behavior

eT <Tc = eo − A−(1 − T /Tc)
1−α− , (12)

eT >Tc = ed − A+(1 − Tc/T )1−α+ (13)

with α−,α+ > 0.
On the other hand, if well defined metastable states occur, the

energy could be represented in terms of a specific heat diverging
at pseudospinodal temperatures T +

sp , T −
sp

eT <Tc = e−
sp − A−(

1 − T /T +
sp

)1−α−
, (14)

eT >Tc = e+
sp − A+(

1 − T −
sp/T

)1−α+
. (15)

If divergences for the specific heat occur at the pseudospin-
odals, we should see exponents α− = α+ ≈ 0 in Eqs. (12) and (13),
since Eqs. (14) and (15) imply finite slopes at Tc .

We measure equilibrium curves for eT <Tc (eT >Tc ) starting from
an ordered (disordered) initial state and performing a cooling
(heating) procedure approaching Tc , as described in Section 3. The
results are presented in Figs. 6 and 7. In both figures a crossover
of the curve’s slope as we approach Tc can be observed for all val-
ues of q. Close enough to Tc , the curves for q = 9,15,96 show
exponents which are indistinguishable from 1, consistently with
the existence of metastability and divergences at spinodal temper-
atures different from Tc , at least for q � 9.

As pointed out by Binder [16], to observe the crossover (if it ex-
ists at all) a temperature resolution at least �T = Tc − T −

sp for the
high energy branch (or �T = T +

sp −Tc for the low energy branch) is
needed, where �T ≡ |T − Tc |. A numerical estimation of the lower
spinodal temperature predicted by Short Time Dynamics [20] is
given by

Tc − T −
sp

Tc
	 0.0007

(
ln(1 + q − 4)

)2.81
. (16)

The vertical dashed lines in Fig. 6 correspond to T = Tc + �T (q),
as predicted from Eq. (16) according to the previous criterion. The
coincidence with the crossover points for all values of q shows a
complete agreement between the present results and those from
Short Time Dynamics calculations. To attain the desired tempera-
ture resolution the system size has to be large enough, since finite
size rounding errors are expected to decay as 1/L [16,45]. This is
illustrated in the inset of Fig. 6 for the particular case q = 9, where
a strong finite size effect is observed for L = 128. A rough estima-
tion of the minimum size required to reduce the error L ≈ 1/�T
Fig. 6. (Color online.) Log–log plot of energy differences versus temperatures T > Tc

for various q. Data correspond to averages over 20 samples of systems size L =
2048, equilibration times ranging from 5×104[MCS] to 2×105[MCS] and measure-
ment times of 5 × 104[MCS], with sampling every 100[MCS]. Error bars were esti-
mated considering a 90% confidence interval (only some representative error bars
are shown for clarity). Full color lines are power-law fits of the form |(e − ed)/ed| =
A(1− Tc/T )a (resulting exponents a are showed in the labels). Dashed vertical lines
of different colors correspond to T = Tc + �T (q), with �T = Tc − T −

sp and T −
sp from

Eq. (16). The inset shows q = 9 curves for different system sizes, the full orange
curve indicates the slope 1.

Fig. 7. (Color online.) Log–log plot of energy differences versus temperatures T <

Tc for various q. Data correspond to averages over 20 samples of systems size
L = 2048, equilibration times ranging from 5 × 104[MCS] to 2 × 105[MCS] and
measurement times of 5 × 104[MCS], with sampling every 100[MCS]. Error bars
were estimated considering a 90% confidence interval (only some representative
error bars are shown for clarity). Full color lines are power-law fits of the form
(e − eo)/eo = A(1 − T /Tc)

a (resulting exponents a are shown in the labels).

predicts L = 400. We see that this finite size effect is suppressed
for sizes L � 1000. Moreover, further increase of the system size
does not change the behavior of the curves close to Tc .

We have no estimations for T +
sp for arbitrary values of q, but a

close look to the curves in Fig. 2 suggest that T +
sp is closer to Tc

than T −
sp is. This is consistent with the behavior observed in Fig. 7,

where crossovers occur closer to Tc than in Fig. 6.
Our results for q = 6 are not conclusive. For instance, in the

high energy branch we observe the previously discussed crossover,
but the slope changes from 0.6 to 0.8. Such variation is of the
same order of the fitting error below the crossover. This is because
statistical fluctuations in the energy become very important at the
required temperature resolution level (�T /Tc � 10−4), as can be
seen in Fig. 6. Hence, to obtain a clear answer a very large sam-
ple size (one can roughly estimate ∼2000) and probably a larger
system size are needed. In fact, we performed simulations with a
sample size 50 (for L = 2048), without any improvement in the re-
sults. We even simulate systems of L = 8192 with a sample size on
the order of 10 with no appreciable change.
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The situation is more difficult for the low energy branch, where
no clear evidence of crossover is observed (see Fig. 7). However,
one could expect the existence of an upper spinodal temperature
T +

sp located closer to Tc than the lower one T −
sp and therefore a

higher temperature resolution (together with larger system and
sampling sizes) would be needed to elucidate whether there is
metastability or not.

7. Discussion

We implemented a CUDA-based parallel Monte Carlo algorithm
to simulate the Statistical Mechanics of the q-state Potts model.
The code allows a speedup (compared with an optimized serial
code running on a CPU) from 42× in the GTX 280 card up to
155× in a GTX 480, with an average time per spin flip of 0.54 ns
down to 0.147 ns respectively. Those times are of the same order of
previous implementations in the simpler case of the Ising model,
without the usage of sophisticated programming techniques, such
as multi-spin coding. Besides the speedup, the present algorithm
allows the simulation of very large systems in very short times,
namely ∼109 spins with an average time per MCS of 0.15 s. Such
performance is almost independent of the value of q. The key fac-
tors to achieve those numbers is the per-thread independent RNG
that is fast and takes only a few registers, the framing scheme that
increases the amount of computation done by each thread and at
the same time it bounds the number of independent RNG needed,
and finally the cell-packing mapping that orders the memory ac-
cess.

The possibility of performing high speed simulations at large
enough system sizes allowed us to study the metastability prob-
lem in the two-dimensional system based on Binder’s criterion,
namely, on the existence or not of specific heat singularities at
spinodal temperatures different from the transition one (but very
close to). Our results provide a positive numerical evidence about
the existence of metastability on very large systems, at least for
q � 9.

Even when our results for q = 6 suggest the same behavior as
for larger values of q, they could also be consistent with the ab-
sence of metastability. Hence, one cannot exclude the existence of
a second critical value 4 < q∗ � 9 such that metastability disap-
pears when 4 < q < q∗ .

Although the present implementation was done for a two-
dimensional system with nearest neighbors interactions (checker-
board update scheme), its generalization to three-dimensional sys-
tems and/or longer ranged interactions is feasible, but some fea-
tures should be adjusted. For the generalization to the 3D case,
the checkerboard scheme defining two independent sub-networks
persists, however the cell-packing scheme should be updated con-
veniently. For the 2D case with first and second neighbors interac-
tions, there are nine independent sub-networks to update instead
of two. The combination of both generalizations is direct.

The present implementation is based on the simplest single-
spin flip algorithm namely, Metropolis. Its extension to more so-
phisticated single-spin flip algorithms (see for example Refs. [50,
51]) is also straightforward and represents an interesting prospec-
tive in the field. In particular, temperature reweighting [52] or
other histogram-based techniques (see for example [47]) can be
implemented by keeping track of the energy changes at each spin
flip for each step, instead of making the calculation of the energy
over the whole system at each step. This kind of tracking could be
done without loose of performance by implementing a parallel ac-
cumulation of local energy changes on-the-fly taking advantage of
the GPU’s hierarchic memory scheme.

Besides its theoretical interest, the large-q Potts model (or
minor variations of it) is widely used for simulating the dy-
namics of a large variety of systems, such as soap bubbles and
foam [53,54], grain growth [55,56], gene segregation [57], biologi-
cal cells [58], tumor migration [59], image segmentation [60], neu-
ral networks [61] and social demographics behavior [62,63]. The
present implementation of the Potts model on GPUs, or easy mod-
ifications of it, would result helpful for some of the above cited
applications. The possibility of simulating bigger systems and hav-
ing results faster than usual should be welcomed in the statistical
physics community. Our CUDA code is available for download and
use under GNU GPL 3.0 at our Group webpage [44].
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